1、作用:
根据客户活跃程度和交易金额的贡献,进行客户价值细分的一种方法。它能够识别优质客户;定制个性化的沟通和营销服务,为更多的营销决策提供有力支持;能够衡量客户价值和客户利润创收的能力。
2、RFM解释:
R(Recency):最近一次交易时间间隔
F(Frequency):客户在最近一段时间内交易次数
M(Monetray):客户在最近一段时间内交易金额
3、如何建模:
对于R\F\M三个维度,分别设定一个阈值,用来划分客户在该维度的价值是高还是低。这个阈值可以用中位数、平均数或经验数等等。令每个维度高于阈值为1,低于阈值为0,则可将客户划分成8类。

这样,就可以对每类客户群体进行定性的分析。
4、模型优点:
(1)分类速度快
(2)可以直观了解用户消费质量,快速监控高消费客户的流失情况,也可以及时发现新土豪用户。
5、模型缺点:
(1)只能对具有充值行为的用户进行观察,无法对未充值用户分类
(2)R、F、M阈值设置会影响用户的划分,需要仔细调整