贝叶斯统计——6. 贝叶斯统计计算方法

本文介绍了贝叶斯统计中的计算方法,包括蒙特卡洛抽样、重要性抽样以及MCMC中的马尔可夫链概念。文章详细阐述了蒙特卡洛方法的局限性,如计算成本高、收敛速度慢和样本相关性问题,随后引入马尔可夫链以解决这些问题。还讨论了Metropolis-Hastings算法和Gibbs抽样方法,这两种方法在处理高维分布和复杂模型时尤为有效。文章最后提到了R与WinBUGS软件在贝叶斯统计中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6.1 引言

在贝叶斯统计方法中常常需要计算后验分布的期望、方差、分位数或众数等数字特征比如常用的后验均值,它是在平方损失下的贝叶斯估计,此估计量的精度是通过后验方差来度量的后验众数、后验中位数以及后验分位数也常常被 用来作为贝叶斯估计或建立贝叶斯可信区间等如果先验分布不是共辄先验分布(这在许多问题里经常遇到),那么后验分布往往不再是标准的分布.因此,需 要计算的后验分布数字特征往往没有显式表达,与后验分布有关的一由些积分是很难用数值方法去计算的,尤其是在高维的情形,马尔可夫链蒙特卡洛(Markov Chain Monte Carlo, 简称 MCMC)方法提供了一个有效的途径去处理这类问题


6.2 蒙特卡洛抽样方法

6.2.2 蒙特卡洛抽样(MonteCarlo sampling)方法

蒙特卡洛抽样(Monte Carlo sampling)方法是一种统计方法,通过从概率分布中抽取大量的样本来估计数学问题的解。在蒙特卡洛抽样中,通过生成符合特定概率分布的随机样本,对这些样本进行统计分析,可以得到对问题解的估计。蒙特卡洛逼近(Monte Carlo approximation)是蒙特卡洛抽样方法的一种应用,主要用于估计难以解析求解的问题,如积分、期望值或概率等。通过生成大量的随机样本,利用样本的统计特性来逼近问题的解࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

探路者Myra

童叟无欺,愿者上钩,感恩认可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值