基于pytorch实现CIFAR10彩色图片识别

一、前期准备

1.设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

2. 导入数据

使用dataset下载CIFAR10数据集,并划分好训练集与测试集

使用dataloader加载数据,并设置好基本的batch_size

train_ds = torchvision.datasets.CIFAR10('./Data/', 
                                        train=True, 
                                        transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                        download=True)

test_ds  = torchvision.datasets.CIFAR10('./Data/', 
                                        train=False, 
                                        transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                        download=True)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                        batch_size=batch_size, 
                                        shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                        batch_size=batch_size)
# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
imgs.shape
torch.Size([32, 3, 32, 32])

3. 数据可视化

squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )

import numpy as np

# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')

在这里插入图片描述

二、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

1.torch.nn.Conv2d()详解

  • 函数原型:torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
  • 参数说明:
    • in_channels (int) – 输入信号的通道数(即图片的通道数)。
    • out_channels (int) – 卷积产生的通道数。
    • kernel_size (int or tuple) – 卷积核的尺寸。
    • stride (int or tuple, optional) – 卷积步长。默认值:1
    • padding (int or tuple, optional) – 输入的每一条边补充0的层数。默认值:0
    • dilation (int or tuple, optional) – 卷积核元素之间的间距。默认值:1
    • groups (int, optional) – 从输入通道到输出通道的阻塞连接数。默认值:1
    • bias (bool, optional) – 如果bias=True,添加偏置。默认值:True
    • padding_mode (string, optional) – 边界模式,可以是‘zeros’、‘reflect’、‘replicate’或‘circular’。默认值:‘zeros’
    • device (torch.device, optional) – 输出数据的设备。默认值:None
    • dtype (torch.dtype, optional) – 输出数据的类型。默认值:None

2.torch.nn.Linear()详解

  • 函数原型:torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)
  • 参数说明:
    • in_features (int) – 输入特征的数量
    • out_features (int) – 输出特征的数量
    • bias (bool, optional) – 如果bias=True,添加偏置。默认值:True
    • device (torch.device, optional) – 输出数据的设备。默认值:None
    • dtype (torch.dtype, optional) – 输出数据的类型。默认值:None

3.torch.nn.MaxPool2d()详解

  • 函数原型:torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
  • 参数说明:
    • kernel_size (int or tuple) – 池化窗口的大小。
    • stride (int or tuple, optional) – 池化窗口的步长。默认值:kernel_size
    • padding (int or tuple, optional) – 在输入上填充0的层数。默认值:0
    • dilation (int or tuple, optional) – 池化窗口的膨胀率。默认值:1
    • return_indices (bool, optional) – 如果为True,返回最大值的索引。默认值:False
    • ceil_mode (bool, optional) – 如果为True,使用ceil来计算输出大小。默认值:False

4.关于卷积层、池化层的计算

  • 卷积层:

    • 输入特征图大小为(H, W)
    • 卷积核大小为(kH, kW)
    • 步长为(sH, sW)
    • 填充为(pH, pW)
    • 输出特征图大小为(H’, W’)
    • 计算公式:H’ = (H + 2pH - kH) / sH + 1
    • W’ = (W + 2pW - kW) / sW + 1
  • 池化层:

    • 输入特征图大小为(H, W)
    • 池化窗口大小为(kH, kW)
    • 步长为(sH, sW)
    • 填充为(pH, pW)
    • 输出特征图大小为(H’, W’)
    • 计算公式:H’ = (H - kH) / sH + 1
    • W’ = (W - kW) / sW + 1
  • 下面的网络数据shape变化过程为:
    3, 32, 32(输入数据)

    -> 64, 30, 30(经过卷积层1)-> 64, 15, 15(经过池化层1)

    -> 64, 13, 13(经过卷积层2)-> 64, 6, 6(经过池化层2)

    -> 128, 4, 4(经过卷积层3) -> 128, 2, 2(经过池化层3)

    -> 512 -> 256 -> num_classes(10)

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 

        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
        # 前向传播
    def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

加载并打印模型

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)
================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            1,792
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            36,928
├─MaxPool2d: 1-4                         --
├─Conv2d: 1-5                            73,856
├─MaxPool2d: 1-6                         --
├─Linear: 1-7                            131,328
├─Linear: 1-8                            2,570
=================================================================
Total params: 246,474
Trainable params: 246,474
Non-trainable params: 0
=================================================================

三、 训练模型

1. 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

2. 编写训练函数

  • 1.optimizer.zero_grad()

    函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

  • 2.loss.backward()

    PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

    具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

    更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

    如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

  • 3.optimizer.step()

    step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

    注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss
  

4. 正式训练

  • 1.model.train()

    model.train()的作用是启用 Batch Normalization 和 Dropout。

    如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

  • 2.model.eval()

    model.eval()的作用是关闭 Batch Normalization 和 Dropout。

    如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

    训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:13.7%, Train_loss:2.262, Test_acc:21.3%,Test_loss:2.083
Epoch: 2, Train_acc:25.1%, Train_loss:2.006, Test_acc:30.3%,Test_loss:1.898
Epoch: 3, Train_acc:33.9%, Train_loss:1.804, Test_acc:39.1%,Test_loss:1.668
Epoch: 4, Train_acc:41.2%, Train_loss:1.617, Test_acc:42.5%,Test_loss:1.576
Epoch: 5, Train_acc:44.9%, Train_loss:1.513, Test_acc:45.7%,Test_loss:1.479
Epoch: 6, Train_acc:48.5%, Train_loss:1.424, Test_acc:50.5%,Test_loss:1.375
Epoch: 7, Train_acc:51.9%, Train_loss:1.344, Test_acc:53.9%,Test_loss:1.309
Epoch: 8, Train_acc:54.5%, Train_loss:1.273, Test_acc:52.3%,Test_loss:1.318
Epoch: 9, Train_acc:57.2%, Train_loss:1.207, Test_acc:55.4%,Test_loss:1.244
Epoch:10, Train_acc:59.4%, Train_loss:1.151, Test_acc:58.7%,Test_loss:1.183
Done

四、 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

五、个人总结

通过本次学习,我学会了如何使用PyTorch搭建一个简单的卷积神经网络(CNN)模型,并对CIFAR10数据集进行训练和测试。在构建CNN模型时,我了解了卷积层、池化层、全连接层等的作用和参数设置,以及如何通过PyTorch中的函数来实现这些层。在训练过程中,我学会了设置超参数、编写训练函数和测试函数,并对模型进行了多次训练和测试。最后,我通过结果可视化对模型的训练过程和性能进行了分析和展示。
总的来说,本次学习让我对深度学习中的CNN模型有了更深入的了解,也提高了我在PyTorch框架下构建和训练模型的能力。希望在以后的学习和实践中能够进一步加深对深度学习的理解,并运用到更多的实际问题中。

  • 20
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值