GAN读书笔记:Unsupervised 3D Shape Completion through GAN Inversion

1. 论文目的:①以无监督学习的方式提高点云补全的效果。②对于输入的残缺点云,经过 补全输出多个可能对应的完整形状。③充分利用预训练的 GAN 中的先验知识,并且不受残 缺点云的域影响。
2. 领域现状:大多数点云补全方法在很大程度上依赖于成对的残缺 - 完整点云,并以全监督方式进行学习。尽管它们在域内数据上的表现效果良好,但泛化到其他形式的残缺点云或现 实世界的残缺扫描时,由于域的差距,往往无法获得令人满意的结果。
3. 本文工作:提出了一个新颖的框架 ShapeInversion, 首次在点云补全任务中引入 GAN 逆映射。
4. 具体做法:该方法充分利用预训练的 GAN 中的先验知识,并且不受残缺点云的域影响。一个潜码通过预训练的 GAN 生成一个完整点云,再通过一个三维降采样模块 M 转化为一个 残缺点云,进而与输入的残缺点云计算损失函数。该框架利用梯度下降的方法反传损失函数 来更新潜码并且微调预训练的 GAN ,从而更好地重建与输入的残缺点云对应的完整形状。
5. 做法特点:①引入 GAN 对抗生成网络。②提高点云均匀度 - PatchVariance 。③ k-Mask –三维的降采样模块。
6. 这种特点的好处:通过这种方式, ShapeInversion 不再需要成对的训练数据,并且能够在训练好的生成模型中整合丰富的先验数据,并展示出更好的泛化能力。
7. 评估效果:
①在 ShapeNet 基准上, ShapeInversion 优于 SOTA 无监督方法,并可与用配对数据学习的有监督方法相媲美。

 ②ShapeInversion在三种数据集中,表现很好的泛化能力和鲁棒性。

③当输入物体太过残缺因而产生不确定性,ShapeInversion可以提供多解,并且保证每个解都合理的反应残缺物体的可见部分。

④由于 GAN 的引入, ShapeInversion 能够很好的实现对已知点云形状的编辑(抖动和变形)。
段内逻辑:论文目的 ----> 领域现状 ----> 本文工作 ----> 具体做法 ----> 做法特点 ----> 这种做法的好
----> 评估效果
1 Introduction
1
1. 3D 点云补全概念和应用场景(机器人导航、场景理解)进行介绍。
2. 阐述领域现状——目前大多数点云补全的研究都是以完全监督的方式进行训练。
3. 面临的问题——由于域的差距,往往无法获得令人满意的结果。
段内逻辑:概念和应用场景介绍 ----> 阐述领域现状 ----> 面临的问题
2
1. GAN 逆映射在 2D 中的应用中得到启发。
2. 提出解决方法——引入 GAN 逆映射用于 3D 点云补全。
3. 阐述方法过程——充分利用预训练的 GAN 中的先验知识,起到无监督学习的作用,通过将一个潜码(应该是个残缺点云)送入 GAN ,然后生成完整点云。
4. 引入 GAN 所带来的好处——①为输入的残缺点云提供多个合理的完整形状。②形状抖动和变形。
段内逻辑:启发 ----> 提出解决方法 ----> 阐述过程 ----> 引入 GAN 所带来的好处
3
1. GAN 逆映射用于 3D 数据所面临的挑战——点云分布不均匀和点云的无序性(点在三维空间的对应关系)。
2. 具体阐述面临的问题。
①与遵循网格状结构的二维图像不同,像素的位置是明确的,不同三维形状的点云是高度非结构化的。通常情况下,在三维形状上训练的 GANs 会产生具有明显不均匀性的点云, 即点在形状表面的分布不均匀。这种不均匀性可能会导致形状有不想要的部分,破坏了我们 预测的完整性。
②点云的无序性使得完成任务与二维图像修复有很大的不同。在二维图像修复中,鉴于网格式对齐的像素对应关系,人们可以很容易地测量部分输入的可见区域和预测输出之间的 重建一致性。这种比较在三维形状完成中是具有挑战性的,因为两个三维形状的相应区域可 能位于三维空间中的不同位置。如果没有准确的点对应关系, GAN 逆映射将受到不良重建 的影响,并反过来危害到形状补全任务。
段内逻辑:面临的问题 ----> 具体阐述问题
4
1. 为提高点云均匀度,提出解决方案— PatchVariance
2. 阐述解决方案—— PatchVariance 在物体表面上对 patches 进行采样,并对 patch 中心与其各自最近的邻域之间的平均距离方差进行惩罚训练,以确保平面假设。
3. PatchVariance 与现有正则化方法的区别—— PatchVariance 是一个 soft 正则器,在训练 GAN时,可以在物体层面上即时增强点云均匀性。
段内逻辑:提出解决方案 ----> 阐述解决方案 ----> 比较现有方法
5
1. 为解决残缺输入和预测形状之间的点云对应关系,提出 k-Mask
2. 阐述解决方案——让残缺输入中的每个点从预测的形状中寻找它的 k- 邻近点。所有这些k- 邻近的指数定义了可见区域的 Mask ,我们可以从中计算出重建损失。
3. 与现有方法对比—— k-Mask 表现出更高的鲁棒性。
段内逻辑:提出解决方案 ----> 阐述解决方案 ----> 比较现有方法
6
1. 评估效果(见上文 Abstract
Introduction 段间逻辑:概念和应用场景介绍 ----> 阐述领域现状 ----> 面临的问题 ----> 启发 ---->提出解决方法 ----> 阐述过程 ----> 引入 GAN 所带来的好处 ----> 具体阐述问题 ----> 提出解决方案
----> 阐述解决方案 ----> 比较现有方法 ----> 评估效果
2 Related Work
1
1. 介绍三维形状补全的应用领域(机器人和感知方面)。
2. 三维形状补全的起源(PCN )。
3. 引出大多数现有的三维形状补全方法——以全监督的方式对特定形式的残缺形状进行训练,并对完整形状进行配对。
4. 上述方法的局限性——由于域的差距,无法从域内推广至现实或其他形式的局部形状。
5. 为解决上述局限性,引出目前的 SOTA 无监督方法—— pcl2pcl
6. pcl2pcl 是这样解决的(简单介绍了一下流程)
7. 本文方法也属于无监督学习方法,并优于 pcl2pcl
段内逻辑:介绍三维形状补全的应用领域 ----> 三维形状补全的起源 ----> 引出大多数现有的三维形状补全方法 ----> 局限性 ----> 解决上述局限性(pcl2pcl ---->pcl2pcl 是怎么解决的 ----> 本文 方法相较于 pcl2pcl 的优势
2
1. 介绍目前最先进的 GANs BigGAN StyleGAN )——通常是在 2D 图像上进行训练。
2. GAN 逆映射的优势——可以使用训练好的 GAN 作为有效的先验,以高保真的方式重建图像。
3. 简单概括 GAN 逆映射的流程——该方法的目的是找到一个潜在向量,用预先训练好的GAN 对给定的图像进行最佳重建。通常,潜在向量可以基于梯度下降进行优化,或者通过 一个额外的编码器从图像空间进行投影。 4. 对上述方法进行优化——在梯度下降之前引入一个编码器,可以作为更好的初始化。
5. 引出本文方法是第一个将 GAN 逆映射应用于 3D 点云补全任务。
段内逻辑:介绍目前最先进的 GANs---->GAN 逆映射的优势 ----> 简单概括 GAN 逆映射的流程----> GAN 逆映射进行优化 ----> GAN 逆映射应用于 3D 点云补全任务(本文所提出的想法)
3 Method
1
1. 研究效果的预期——希望将训练有素的 GAN 作为形状补全的有效先验,特别是处理广泛种类的残缺形状,并将其推广到未见过的形状。
2. 提出创新点——将 GAN 用于 3D 点云补全。
段内逻辑:研究预期 ----> 提出创新点
2 、段 3 、段 4
1. 介绍 GAN 逆映射在研究中的应用—— GAN 逆映射公式。
2D 图像应用中的公式理解: 在参数为 \theta GAN 生成器部分 G 能够学习到从隐向量空间 (Latent Space) z 到图像x_{in} 的映射。 GAN 逆映射则是将图像 x_{in} 映射回 z * ,进而得到由预训 练的生成器 G 合成的图像 x_{c}^{*},其中 x_{c}^{*}与真实的 x_{in}要足够接近(减小两张图像之间的差异)。  
在本文 3D 点云应用中的公式理解: 在参数为 \theta 的 GAN 生成器部分 G 对点云形式的三维形 状进行训练后,它可以从潜码向量 z 生成点云形状  x_{c} GAN 逆映射则是从初始化阶段开始, 对数百个潜码向量进行随机采样,并选择 L 值最小的 z 作为微调的初始值,目的是为了找到 最好的潜码向量 z * ,然后用生成器 G 重建一个给定的点云形状 x_{in}(训练中会不断调整 z 到得到 z * ,从 z * 生成的点云形状的 x_{c}^{*}与点云形状x_{in}之间的差异最小)。  
2. 改善 GAN 逆映射——在实时更新潜码向量的同时微调生成器,因此,公式变为:
公式 (1) (2) 的区别: 公式 (2) 在公式 (1) 的基础上,通过梯度下降更新 z 的同时也更新 \theta ,达 到微调生成器的目的。
3. GAN 逆映射应用于点云补全——目的是为了从一个给定的残缺点云形状x_{in}推断出一 个完整的点云形状 x_{c} ,其中需要计算空间距离,因此需要加入退化函数 M 将一个完整的点 云形状转换成一个残缺形状,因此,公式变为:
段内逻辑: GAN 逆映射在 3D 点云研究中的应用 ----> 改善 GAN 逆映射 ----> GAN 逆映射应用于 3D 点云补全
段间逻辑:研究预期 ----> 提出本文研究的创新点 ---->GAN 逆映射在 3D 点云研究中的应用 ---->改善 GAN 逆映射 ----> GAN 逆映射应用于 3D 点云补全
3.1 Enhancing Point Cloud Uniformity
1
1. 阐述 2D 图像和 3D 点云的不同点—— 2D 图像生成的像素是以规则的格子排列的,而三维形状是由连续的三维空间中的点表示的。
2. 3D GANs 的局限性——点云分布不均匀。
3. 举案例(tree-GAN ,但仍未解决点云不均匀的问题)
4. 造成点云分布不均匀的原因——有远距离关系的点可能会在三维空间中杂乱无章。如果没有适当的正则化,不同分支的点会倾向于形成类似高斯的分布,如更多的点聚集在物体的几何中心或不同语义部分的连接处,导致形状的高度不均匀。
段内逻辑:阐述 2D 图像和 3D 点云的不同点 ----> 局限性 ----> 举案例 ----> 产生局限性的原因
2
1. 介绍了目前领域内,解决上述点云分布问题的一些解决措施(排斥性损失、扩展惩罚等)。
2. 上述解决措施的不足之处——这些方法分别只对形状的每一部分进行规范化处理,没有实现点云整体的均匀性。
3. 为改善上述的不足,本文提出 PatchVariance 解决方案(创新)。
段内逻辑:介绍目前领域内的一些解决措施 ----> 这些措施存在的不足 ----> 提出新的解决方案
(创新)
3 、段 4
1. 对上述提出的新方案(PatchVariance )进行说明。公式如下:

公式理解: 通过最远点取样(FPS )对物体表面的 n 个种子位置进行随机采样,计算每个种 子与其 k 个邻近之间种子点之间的平均距离 \rho _{j} (每个种子与其 k 个邻近种子点形成一个 patch ,所以也可以说是计算所有 patches 的平均距离),然后计算所有 patches 的平均距离 的方差。
2. 评估效果—— PatchVariance 明显改善了生成形状的均匀性。

段内逻辑:文中提出的方法公式(PatchVariance )进行说明 ----> 评估效果
段间逻辑:阐述 2D 图像和 3D 点云的不同点 ---->3D GANs 局限性 ----> 举例说明 ----> 产生局限 性的原因 ----> 针对此类问题,目前领域内的一些解决措施 ----> 这些措施存在的不足 ----> 提出 新的解决方案(创新) ----> 方法说明 ----> 评估效果
3.2 Degradation in the 3D Space
1 、段 2 、段 3 、段 4
1. 定义退化函数 M
2. 由于点云独特的非结构化性质,定义这样一个退化函数是不合适的。
3. 基于上述问题,引入一个新的退化函数—— k-Mask
4. 利用欧式距离公式,动态获得两个点云之间的点对应关系。
5. x_{c} 完整点云通过退化函数转换成残缺点云 x_{p} ,公式如下:

 

公式理解: 对于 x_{in} 中的每个点 p_{i} ,我们从 x_{c} 中寻找其 k 个邻近点,表示为N_{k}^{x_{c}}(p_{i}) ,因此, x_{p} 可以看作是这些邻域的结合。  
6. 与其他掩码方法进行比较(voxel-Mask 和τ -Mask
7. 比较结果—— k-Mask 提供了一个准确和稳健的退化,而其他掩码未能同时实现这两个目标。这是因为 voxel-Mask 和τ-Mask 都利用了基本固定的距离阈值,因此无法适应某些区域 内点密度的变化。
段间逻辑:定义退化函数 ----> 局限性 ----> 引入新的退化函数 ----> 通过欧式距离公式,解决点对应关系 ----> 公式 ----> 掩码方法比较 ----> 比较结果
3.3 Loss Function for Inversion
1
1. 介绍了两种距离度量方式(Chamfer Distance (CD )和 Earth Mover’s Distance EMD ))。
2. 两种方式的应用分析——在 GAN 逆映射的应用中, EMD 存在局限性,故采用 CD
3. Chamfer Distance (CD )公式如下:
公式理解: x_{p} x_{in} 分别表示两组 3D 点云,第一个式子表示 x_{p} 中任意一点 q x_{in} 的最小距离 之和,第二个式子则表示 x_{in} 中任意一点 p x_{p} 的最小距离之和。如果该距离较大,则说明 两组点云区别较大;如果距离较小,则说明重建效果较好。  
4. 计算 L1 距离作为特征距离损失,公式如下:

 5. (7)(8)两个公式可以得到整体损失函数——用于形状完成和完整形状的重建。

段内逻辑:介绍两种距离度量方式 ----> 两种方式的应用分析(选其中一种) ---->Chamfer
Distance (CD )公式 ----> 特征距离损失公式 ----> 整体损失函数
4 Experiments
....

 

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值