深度学习入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。
目录
一、背景知识 -- 残差结构
关于残差以及一些残差网络(eg: Resnet)的分析,可以看一下博主之前写的博客
二、Bottleneck和building block
说到Bottleneck,就会想到他的“兄弟” -- building block。Bottleneck和building block其实都是在Resnet中提出的。如下图所示,左边是针对Resnet34提出的building block;右边是针对Resnet50提出的Bottleneck。

building block由两个3*3的卷积层组成,Bottleneck由两个1*1卷积层夹心一个3*3卷积层组成:其中1*1卷积层负责减少然后增加(实际上就是恢复)维数,让3*3卷积层成为输入/输出维数更小的瓶颈。Bottleneck既减少了参数量,又优化了计算,保持了原有的精度。
第一个1*1的卷积把256维channel降到64维,最后再通过

本文详细介绍了残差网络中的Bottleneck结构及其在YOLOv5中的应用。对比了Bottleneck与Buildingblock的区别,并深入分析了YOLOv5中Bottleneck的结构变化及代码实现。
最低0.47元/天 解锁文章
167





