1梯度
1)定义:
梯度是一个向量,表示对于一个确定的函数,在此函数上确定的某点处,存在一个方向导数,沿着该方向可以取得最大值,即函数在该点处,沿着该方向变化最快,变化率最大。我们把这个变化最快的方向,作为梯度这个向量的方向;把这个最大变化率值,作为梯度这个向量的模。
2)加权求和:
在对一组数值进行求和的过程中,根据每个数值的重要性或权重,赋予不同的系数,然后求和得到加权后的总和。
3)计算方法是对各方向的偏导数加权求和:
gradu=aₓ(∂u/∂x)+aᵧ(∂u/∂y)+az(∂u/∂z)。
2散度
1)向量场是数学和物理学中的一个概念,它描述了在空间中的每一点都有一个向量与之相关联的情况。
2)散度是描述空间各点向量场发散或汇聚强弱程度的物理量。
3)在直角坐标系(也称为笛卡尔坐标系)中,散度的计算公式为:
div(F) = ∂Fx/∂x + ∂Fy/∂y + ∂Fz/∂z
其中,F(x,y,z) = (Fx, Fy, Fz)是一个三维向量场,Fx、Fy、Fz分别表示向量场在x、y、z三个方向上的分量。∂/∂x、∂/∂y、∂/∂z分别表示对x、y、z的偏导数。
3旋度
1)旋度是一个向量。
2)旋度是用于描述一个向量场的旋转性质的向量。
3)一个向量沿一条起点和终点重合的一个闭合回路的曲线做积分,得到的结果叫环量Γ。
4)旋度向量的方向:是指定的向量场内那点的一个特别的旋转轴的方向,此旋转轴既是附近环量最大的旋转轴,又与向量旋转的方向满足右手定则;旋度向量的大小(Γ/S):则是绕着这个旋转轴旋转的环量Γ与旋转路径围成的点的面积S之比,类似一个环量面密度。
5)旋度可以描绘三维向量场,对场中某一点附近,距离接近零的空间内,造成的旋转的效果。
6)旋度公式推理:
7)旋度计算公式的基本形式
旋度的计算公式可以表示为
curl(F) = (∂Fz / ∂y - ∂Fy / ∂z)i
+ (∂Fx / ∂z - ∂Fz / ∂x)j
+ (∂Fy / ∂x - ∂Fx / ∂y)k,
其中F = (Fx, Fy, Fz)代表向量场,
i、j、k分别是x、y、z轴上的单位向量。
这个公式通过计算向量场各分量关于坐标的偏导数,然后按照特定的组合方式得到旋度的三个分量。