(深度学习记录)第N3周:Pytorch文本分类入门

本文介绍了如何在PyTorch环境下,利用TorchText库对AG_NEWS数据集进行文本分类任务,包括数据加载、词典构建、数据批次处理、模型定义及训练过程。着重展示了词嵌入层和数据迭代器的使用方法。
摘要由CSDN通过智能技术生成

🏡我的环境:

  • 语言环境:Python3.11.4
  • 编译器:Jupyter Notebook
  • torcch版本:2.0.1

 1.加载数据

import torch
import torch. nn as nn
import torchvision
from torchvision import transforms,datasets
import os,PIL, pathlib,warnings
warnings.filterwarnings("ignore")
device = torch. device('mps')
device
device(type='mps')
from torchtext.datasets import AG_NEWS
train_iter = AG_NEWS(split='train')

2.构建词典

from torchtext.data.utils import get_tokenizer
from torchtext.vocab import build_vocab_from_iterator
 
tokenizer = get_tokenizer('basic_english') 
 
def yield_tokens(data_iter):
    for _, text in data_iter:
        yield tokenizer(text)
 
vocab = build_vocab_from_iterator(yield_tokens(train_iter),
                                  specials=["<unk>"])
vocab.set_default_index(vocab["<unk>"]) 

  torchtext.data.utils.get_tokenizer()是一个用于将文本数据分词的函数。它返回一个分词器(tokenizer)函数,可以将一个字符串转换成一个单词的列表。

3.生成数据批次和迭代器

 from torch.utils.data import DataLoader

 def collate_batch(batch):
     label_list,text_list,offsets =[],[],[0]
      
     for (_label,_text) in batch:
         #标签列表
         label_list.append(label_pipeline(_label))
        
         #文本列表
         processed_text = torch.tensor(text_pipeline(_text),dtype=torch.int64)
         text_list.append(processed_text)
 
         #偏移量,即语句的总词汇量
         offsets.append(processed_text.size(0))

      label_list = torch.tensor(label_list,dtype=torch.int64)
      text_list  = torch.cat(text_list)
      offsets    = torch.tensor(offsets[:-1]).cumsum(dim=0)

      return label_list.to(device), text_list.to(device),offsets.to(device)


dataloader = DataLoader(train_iter,
                        batch_size=8,
                        shuffle   =False,
                        collate_fn=collate_batch)

4.定义模型

from torch import nn
 
class TextClassificationModel(nn.Module):
 
    def __init__(self, vocab_size, embed_dim, num_class):
        super(TextClassificationModel, self).__init__()
        
        self.embedding = nn.EmbeddingBag(vocab_size, 
                                         embed_dim, 
                                         sparse=False) 
        
        self.fc = nn.Linear(embed_dim, num_class)
        self.init_weights()
 
    def init_weights(self):
        initrange = 0.5
        self.embedding.weight.data.uniform_(-initrange, initrange)
        self.fc.weight.data.uniform_(-initrange, initrange)
        self.fc.bias.data.zero_()
 
    def forward(self, text, offsets):
        embedded = self.embedding(text, offsets)
        return self.fc(embedded)

1.self.embedding :这是神经网络中的词嵌入层(embedding layer)。词嵌入层的作用是将离散的单词表示(通常为整数索引)映射为固定大小的连续向量。向量捕捉了单词之间的语义关系,作为网络的输入。

2.self.embedding.weight: 这是词嵌入层的权重矩阵,它的形状为“vocab_size,embedding_dim,”其中vocab_size是词汇表的大小,embedding_dim是嵌入向量的维度

3.self.embedding.weight.data :这是权重矩阵的数据部分,我们可以在这里直接操作其底层的张量。

4. .uniform_(-initrange,initrange):这是一个原地操作,用于将权重矩阵的值用一个均匀分布进行初始化。均匀分布的范围为[-initrange,initrange],其中initrange是一个正数。

5.定义函数

def train(dataloader):
    model.train()  # Switch to training mode
    total_acc, train_loss, total_count = 0, 0, 0
    log_interval = 500
    start_time = time.time()
 
    for idx, (label, text, offsets) in enumerate(dataloader):
        predicted_label = model(text, offsets)
 
        optimizer.zero_grad()  # Zero out gradients
        loss = criterion(predicted_label, label)  # Compute the loss between predicted and true labels
        loss.backward()  # Backward pass to compute gradients
        optimizer.step()  # Update weights based on the computed gradients
 
        # Record accuracy and loss
        total_acc += (predicted_label.argmax(1) == label).sum().item()
        train_loss += loss.item()
        total_count += label.size(0)
 
        # Print training progress
        if idx % log_interval == 0 and idx > 0:
            elapsed = time.time() - start_time
            print('| epoch {:1d} | {:4d}/{:4d} batches '
                  '| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx, len(dataloader),
                                              total_acc / total_count, train_loss / total_count))
            total_acc, train_loss, total_count = 0, 0, 0
            start_time = time.time()
def evaluate(dataloader):
    model.eval()  # Switch to evaluation mode
    total_acc, train_loss, total_count = 0, 0, 0
 
    with torch.no_grad():
        for idx, (label, text, offsets) in enumerate(dataloader):
            predicted_label = model(text, offsets)
 
            loss = criterion(predicted_label, label)  # Compute loss without backpropagation
 
            # Record accuracy and loss for evaluation
            total_acc += (predicted_label.argmax(1) == label).sum().item()
            train_loss += loss.item()
            total_count += label.size(0)
 
    return total_acc / total_count, train_loss / total_count

6.训练模型

from torch.utils.data.dataset import random_split
from torch text.data.functional import to_map_style_dataset

EPOCHS  =10
LR  =5
BATCH_SIZE =64

criterion =torch.nn.CrossEntropyLoss
optimizer =torch.optim.SGD(model.parameters(),lr=LR)
scheduler =torch.optim.lr_scheduler.StepLR(optimizer,1.0,gamma=0.1)
total_accu = None

train_iter,test_iter =AG_News()
train_dataset = to_map_style_dataset(train_iter)
test_dataset = to_map_style_dataset(test_iter)
num_train = int(Len(train_dataset)* 0.95)

split_train_,split_valid_ = random_split(train_dataset,
                                         [num_train,len(train_dataset)-num_train])

train_dataloader =DataLoader(split_train_,batch_size=BATCH_SIZE,
                              shuffle=True,collate_fn=collate_batch)valid_dataloader =DataLoader(split_train_,batch_size=BATCH_SIZE,
                              shuffle=True,collate_fn=collate_batch)
test_dataloader =DataLoader(test_dataset,batch_size=BATCH_SIZE,
                              shuffle=True,collate_fn=collate_batch)
    
for epoch in range(1,EPOCHS +1):
    epoch_start_time =time.time()
    train(train_dataloader)
    val_acc,val_loss=evaluate(valid_dataloader)

    if total_accu is not None and total_accu >val_acc:
        scheduler.step()
    else: 
        total_accu= val_acc
    print('-'*69)
    print('|epoch {:1d}|time:{:4.3f}s|'
          'valid_acc{:4.3f}valid_loss{:4.3f}'.format(epoch,
                               time.time()-epoch_start_time,
                               val_acc,val_loss))
    print('-'*69)

7.小结

AG News(AG's News Topic Classification Dataset)是一个广泛用于文本分类任务的数据集,尤其是在新闻领域。该数据集是由AG's Corpus of News Articles收集整理而来,包含了四个主要的类别:世界、体育、商业和科技。

TorchText 库是专用于自然语言处理的、基于 Pytorch 生态的第三方库,提供了对文本数据进行预处理的各种工具,但是没有如 TorchVision 库一样的各种已定义模型,如需使用定义好的预训练模型,需要使用 transformers 库。

 TorchText 提供了 Field 对象来定义字段的处理方式,可以针对不同的数据样本定义不同的处理形式。定义 Field 对象,首先需要定义一个分词器,接着根据指定参数分别定义样本和标签的 Field,定义完 Field 之后,需要定义一个构建数据集的函数,接着使用该函数构建 dataset,构建的 train、valid、test 即可在 Pytorch 中使用。TorchText 可使用 Field 对象的 build_vocab 函数来构建词表,在 TorchText 中,DataLoader 被替换成 Iterator 和 BucketIterator。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值