ORB-SLAM3学习

这篇博客详细介绍了ORB-SLAM3中的残差及其在视觉惯性系统中的作用,强调了紧耦合在提高系统准确性和鲁棒性上的优势。内容涵盖视觉惯性系统的概念、工作原理、传感器融合策略,以及预积分的公式推导、噪声处理和零偏影响。同时,博主还分享了在ORB-SLAM3中实施预积分的编程实践和闭环检测流程。
摘要由CSDN通过智能技术生成

DAY-1

1、松紧耦合在视觉惯性系统中的意义是什么

正确答案:

紧耦合在视觉惯性系统中指的是在最底层数据处理阶段就将视觉信息和IMU数据结合起来的方法。这种方法不是分别处理视觉和惯性数据,然后再将结果结合起来,而是将两者的原始数据直接融合到一个统一的估计框架中


紧耦合的意义

1.提高准确性和鲁棒性:紧耦合方法能够更有效地利用视觉和惯性数据之间的互补特性,,提高系统在不同环境和动态条件下的定位和导航准确性。尤其在视觉信息受限或质量下降的情况下(如模糊、低光照、快速运动等),IMU数据的高频率更新能够维持系统的性能

2.减少误差累计:由于紧耦合系统在处理过程中综合考虑视觉和惯性信息,它能够更有效地减少因单一传感器误差(如IMU的积分漂移或摄像头的特征跟踪错误)而导致的误差积累

3.增强系统适应性:紧耦合系统能够更好地适应环境变化和传感器失效情况,提高了系统在复杂环境中的可靠性和鲁棒性。

与松耦合的对比

       松耦合方法在处理视觉和惯性数据时更为独立。在松耦合系统中,首先分别从视觉系统和IMU中独立地估计运动信息,然后再将这些估计的结果结合起来以改善定位和导航的性能。虽然这种方法实现起来相对简单,但它不能像紧耦合那样有效地利用两种传感器数据之间的互补性
       相比之下,紧耦合方法由于在数据融合的最初阶段就综合考虑了所有传感器信息,因此通常能够提供更好的性能,尤其是在视觉数据不稳定或在高动态环境下。然而,紧耦合系统的设计和实现通常更为复杂,需要更高的计算资源,并可能需要更精细的调整和优化

2、什么是VIS(视觉惯性系统),以及如何工作的?

正确答案:

       视觉惯性系统是一种结合了视觉传感器和惯性测量单元的多传感器系统。该系统利用数据和传感器提供的丰富环境信息和IMU提供的高频率运动状态信息,通过融合这两种数据来实现精确的自我定位和导航。

工作原理如下:
       1.视觉传感器:摄像头捕捉环境的视觉信息,如特征点、物体或场景结构。这些信息可以用来估计摄像头的运动和环境的三维结构
       2.惯性测量单元(IMU):测量设备的线性加速度和角速度。这些测量值提供了关于设备运动状态的高频率更新,但由于积分漂移,其独立使用时的长期精度有限
       3.数据融合:VIS系统通过融合视觉信息和IMU数据来提供定位和导航的准确性与鲁棒性。这种融合可以采用不同的策略,例如滤波方法或优化方法。通过考虑视觉信息和IMU数据之间的时间相关性和几何约束,系统能够有效的减少误差并对抗各种传感器噪声和环境变化

1、支持传感器的类型:增加IMU部分

2、相机模型:增加抽象相机模型

3、地图:增加多地图模式、支持多地图融合

4、跟踪线程:在跟丢时通过IMU来推算位姿

5、局部建图线程:在视觉惯性模式下初始化IMU并进行优化

6、闭环线程:增加一种高召回率的闭环算法

DAY-3

1、IMU预积分公式推导

答:从本体坐标系到世界坐标系的旋转变换 = 本体坐标系到世界坐标系的旋转矩阵右乘本体坐标系下本体坐标系到世界坐标系的角速度的反对称变换

2、

答:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值