优化方法理论合集(9)——快速作用问题

1. 问题描述

给出如下几个条件:

  1. 数学模型
    { x ˙ 1 = a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n ⋮ x ˙ i = a i 1 x 1 + a i 2 x 2 + ⋯ + a i n x n ⋮ x ˙ n = a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n + k u \begin{cases} \dot x_1 = a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n \\ \vdots \\ \dot x_i = a_{i1} x_1 + a_{i2} x_2 + \cdots + a_{in} x_n \\ \vdots \\ \dot x_n = a_{n1} x_1 + a_{n2} x_2 + \cdots + a_{nn} x_n + \bm{ku} \end{cases} x˙1=a11x1+a12x2++a1nxnx˙i=ai1x1+ai2x2++ainxnx˙n=an1x1+an2x2++annxn+ku值得注意的是,只有最后一个式子中含有控制量 u u u
  2. 边界条件(共 2 n \bm{2n} 2n个)
    x i ( 0 ) = x i 0 x i ( T ) = x i T x_i(0) = x_{i0} \\ x_i (T) = x_{iT} xi(0)=xi0xi(T)=xiT
  3. 性能指标,即快速作用指标
    J = ∫ 0 T 1 d t → min ⁡ J = \int _0 ^T 1 dt \rightarrow \min J=0T1dtmin t k − t 0 = T → min ⁡ t_k - t_0 = T \rightarrow \min tkt0=Tmin
    性能指标即为时间跨度。
  4. 对控制量的限制
    ∣ u k ( t ) ∣ ≤ U k max ⁡ \big\lvert u_k (t) \big\rvert \leq U_{k \max} uk(t)Ukmax

2. 解题步骤

首先写出哈密尔顿函数
H = ∑ i = 0 n ψ i ( t ) ⋅ f i ( t ) (1) H = \sum_{i=0} ^n \psi _i (t) \cdot f_i (t) \tag{1} H=i=0nψi(t)fi(t)(1)其中 ψ 0 \psi_0 ψ0为常数, ψ i ≠ 0 \psi_i \neq 0 ψi=0,且
ψ 0 = − 1 < 0 \psi _0 = -1 < 0 ψ0=1<0关于这一点的疑问可以参考博客优化方法理论合集(8)——庞特里亚金最大值原理
这样,(1)式亦即
H ( x ⃗ , ψ ⃗ , u ⃗ ) = ψ 0 ⋅ 1 + ∑ i = 1 n ψ i ( t ) ⋅ f i ( t , x ⃗ , u ⃗ ) = − 1 + ∑ i = 1 n ψ i ( t ) ⋅ f i ( t , x ⃗ , u ⃗ ) (2) \begin{aligned} H \left( \vec x, \vec \psi, \vec u \right) &= \psi_0 \cdot 1 + \sum _{i=1} ^ n \psi _i (t) \cdot f_i \left( t, \vec x, \vec u \right) \\ &= -1 + \sum _{i=1} ^ n \psi _i (t) \cdot f_i \left( t, \vec x, \vec u \right) \tag{2} \end{aligned} H(x ,ψ ,u )=ψ01+i=1nψi(t)fi(t,x ,u )=1+i=1nψi(t)fi(t,x ,u )(2)并依然有
∂ H ∂ u k = 0 (3) \frac{\partial H}{\partial u_k} = 0 \tag{3} ukH=0(3)耦合微分方程组
{ x ˙ i = ∂ H ∂ ψ i ψ ˙ i = − ∂ H ∂ x i (4) \begin{cases} \dot x_i = \frac{\partial H}{\partial \psi _i} \\ \dot \psi_i = - \frac{\partial H}{\partial x_i} \end{cases} \tag{4} {x˙i=ψiHψ˙i=xiH(4)

f i f_i fi中,只有最后一个式子含有 u u u,那么
∂ H ∂ u k = ψ n ( t ) ⋅ k (5) \frac{\partial H}{\partial u_k} = \psi _n (t) \cdot k \tag{5} ukH=ψn(t)k(5)(4)式不是 u u u的函数(因为在求导过程中 k u ku ku求导变成 k k k u u u消失了)。
而根据(3)又有
∂ H ∂ u k = ψ n ( t ) ⋅ k = 0 (6) \frac{\partial H}{\partial u_k} = \psi _n (t) \cdot k = 0 \tag{6} ukH=ψn(t)k=0(6) ψ i ≠ 0 \psi_i \neq 0 ψi=0,因此(6)不成立,此时解题陷入了矛盾。

为解决此矛盾,取
u ( t ) = U k max ⁡ ⋅ s g n ( ∂ H ∂ u ) = U k max ⁡ ⋅ s g n ( k ψ n ( t ) ) = { + U k max ⁡ , k ψ n ( t ) > 0 − U k max ⁡ , k ψ n ( t ) < 0 (7) \begin{aligned} u(t) &= U_{k \max} \cdot sgn \left( \frac{\partial H}{\partial u} \right) \\ &= U_{k \max} \cdot sgn \left( k \psi _n (t) \right) \\ &= \begin{cases} +U_{k \max}, \quad k \psi_n(t) > 0 \\ -U_{k \max}, \quad k \psi_n(t) < 0 \end{cases} \end{aligned} \tag{7} u(t)=Ukmaxsgn(uH)=Ukmaxsgn(kψn(t))={+Ukmax,kψn(t)>0Ukmax,kψn(t)<0(7)可以看出, u ( t ) u(t) u(t)取值仅仅取决于 k ψ n ( t ) k \psi_n(t) kψn(t)的符号,当 k ψ n ( t ) k \psi_n(t) kψn(t)变号时, u ( t ) u(t) u(t)也随之改变自己的取值。而 k k k的值往往是固定的,因此可以理解为, u ( t ) u(t) u(t)取值仅仅取决于 ψ n ( t ) \psi_n(t) ψn(t)的符号,当 ψ n ( t ) \psi_n(t) ψn(t)变号时, u ( t ) u(t) u(t)也随之改变自己的取值

如下图,当 ψ n ( t ) \psi_n(t) ψn(t)变号时, u ( t ) u(t) u(t)也跟着改变自己的取值。

快速作用问题

3. 菲尔德鲍姆理论/ n n n–间隔理论

这里不加证明地给出菲尔德鲍姆理论:
若特征方程的根为实根,则 u ( t ) u(t) u(t)变号的次数不超过 ( n − 1 ) (n-1) (n1)次, n n n为特征方程的阶数。

若系统中存在复根,则菲尔德鲍姆理论不再成立, u ( t ) u(t) u(t)变号次数取决于初始条件,因为初始条件不同会导致响应曲线上下的平移,进而改变响应曲线与横轴交点的个数。

4. 例题

给出如下例题:
{ x ˙ 1 = x 2 x ˙ 2 = u ∣ u ( t ) ∣ ≤ U max ⁡ = 1 t 0 = 0 , t k 未 知 S t a r t = { x 1 ( 0 ) = 2 x 2 ( 0 ) = 1 E n d = { x 1 ( t k ) = 0 x 2 ( t k ) = 0 J = ∫ o t k 1 d t → min ⁡ \begin{cases} \dot x_1 = x_2 \\ \dot x_2 = u \end{cases} \\ \big\lvert u(t) \big\rvert \leq U_{\max} = 1 \\ t_0 = 0, \quad t_k 未知 \\ Start = \begin{cases} x_1(0) = 2 \\ x_2 (0) = 1 \end{cases} \\ End = \begin{cases} x_1(t_k) = 0 \\ x_2 (t_k) = 0 \end{cases} \\ J = \int _o ^{t_k} 1 dt \rightarrow \min {x˙1=x2x˙2=uu(t)Umax=1t0=0,tkStart={x1(0)=2x2(0)=1End={x1(tk)=0x2(tk)=0J=otk1dtmin
□ \square \quad 先根据 x ˙ = A x + B u \dot x = Ax + Bu x˙=Ax+Bu得出
A = [ 0 1 0 0 ] A = \left[ \begin{matrix} 0 & 1 \\ 0 & 0 \end{matrix} \right] A=[0010]求特征根
det ⁡ ( I p − A ) = ∣ p − 1 0 p ∣ = p 2 = 0 \det \left( Ip - A \right) = \left| \begin{matrix} p & -1 \\ 0 & p \end{matrix} \right| = p^2 = 0 det(IpA)=p01p=p2=0所以 p 1 , 2 = 0 p_{1,2} = 0 p1,2=0,均为实根,则 u ( t ) u(t) u(t)变号次数不超过 ( n − 1 ) = 2 − 1 = 1 (n-1) = 2-1 = 1 (n1)=21=1次。

ψ 2 ( t ) \psi_2(t) ψ2(t)可能有如下2种情况:

例题2种情况

写出哈密尔顿函数
H = − 1 + ∑ i = 1 2 ψ i ( t ) ⋅ f i ( t ) = − 1 + ψ 1 ( t ) ⋅ f 1 ( t , x ⃗ , u ⃗ ) + ψ 2 ( t ) ⋅ f 2 ( t , x ⃗ , u ⃗ ) = − 1 + ψ 1 ( t ) ⋅ x 2 + ψ 2 ( t ) ⋅ u \begin{aligned} H &= -1 + \sum _{i=1} ^2 \psi_i (t) \cdot f_i (t) \\ &= -1 + \psi_1 (t) \cdot f_1 \left( t, \vec x, \vec u \right) + \psi_2 (t) \cdot f_2 \left( t, \vec x, \vec u \right) \\ &= -1 + \psi_1 (t) \cdot x_2 + \psi_2 (t) \cdot u \end{aligned} H=1+i=12ψi(t)fi(t)=1+ψ1(t)f1(t,x ,u )+ψ2(t)f2(t,x ,u )=1+ψ1(t)x2+ψ2(t)u
继续写出耦合微分方程组
x ˙ i = ∂ H ∂ ψ i ⟹ x ˙ 1 = ∂ H ∂ ψ 1 = x 2 , x ˙ 2 = ∂ H ∂ ψ 2 = u \dot x_i = \frac{\partial H}{\partial \psi_i} \\ \Longrightarrow \dot x_1 = \frac{\partial H}{\partial \psi_1} = x_2, \qquad \dot x_2 = \frac{\partial H}{\partial \psi_2} = u x˙i=ψiHx˙1=ψ1H=x2,x˙2=ψ2H=u ψ ˙ i = − ∂ H ∂ x i ⟹ ψ ˙ 1 = − ∂ H ∂ x 1 = 0 , ψ ˙ 2 = − ∂ H ∂ x 2 = − ψ 1 ( t ) \dot \psi_i = - \frac{\partial H}{\partial x_i} \\ \Longrightarrow \dot \psi_1 = - \frac{\partial H}{\partial x_1} = 0, \qquad \dot \psi_2 = - \frac{\partial H}{\partial x_2} = - \psi_1(t) ψ˙i=xiHψ˙1=x1H=0,ψ˙2=x2H=ψ1(t)合并有
{ ψ ˙ 1 = 0 ψ ˙ 2 = − ψ 1 ⟹ { ψ 1 = C 1 ψ 2 = − C 1 t + C 2 \begin{cases} \dot \psi_1 = 0 \\ \dot \psi_2 = - \psi_1 \end{cases} \Longrightarrow \begin{cases} \psi_1 = C_1 \\ \psi_2 = -C_1 t + C_2 \end{cases} {ψ˙1=0ψ˙2=ψ1{ψ1=C1ψ2=C1t+C2另一方面,根据式(3)
∂ H ∂ u = ψ 2 ( t ) = 0 \frac{\partial H}{\partial u} = \psi_2(t) = 0 uH=ψ2(t)=0又一次地,与 ψ i ≠ 0 \psi_i \neq 0 ψi=0相矛盾。

因此,取
u ∘ ( t ) = { + U max ⁡ = + 1 , ψ 2 ( t ) > 0 − U max ⁡ = − 1 , ψ 2 ( t ) < 0 u^{\circ} (t) = \begin{cases} +U_{\max} = +1, \quad \psi_2(t) > 0 \\ -U_{\max} = -1, \quad \psi_2(t) < 0 \end{cases} u(t)={+Umax=+1,ψ2(t)>0Umax=1,ψ2(t)<0
列出如下2种情况

情况1

情况2
这两种情况即为可能的控制信号取值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值