统计动力学笔记(一)动态系统随机信号在时域中的变换(自留用)

1. 系统工作质量的表征及若干统计学概念

设一个动态系统的输入为 u ( t ) u(t) u(t),输出为 x ( t ) x(t) x(t),则动态误差即为 e ( t ) = u ( t ) − x ( t ) e(t) = u(t) - x(t) e(t)=u(t)x(t)。当输入 u ( t ) u(t) u(t)为随机信号时, e ( t ) e(t) e(t)即为随机误差。

通常地,在随机输入信号的作用下,系统的工作质量可以由随机的均方差来表示:
e 2 ‾ ( t ) = lim ⁡ T → ∞ 1 2 T ∫ − T T e 2 ( t ) d t (1) \overline{e^2} (t) = \lim _{T \rightarrow \infty} \frac{1}{2T} \int_{-T} ^T e^2 (t) {\rm d} t \tag{1} e2(t)=Tlim2T1TTe2(t)dt(1)

接下来引入几个统计学基本概念。
(1)概率分布函数 F ( x ) F(x) F(x)。概率分布函数指的是随机变量 X X X不超过某个值 x x x(即 X < x X < x X<x)的概率:
F ( x ) = P ( X < x ) F(x) = P (X < x) F(x)=P(X<x)(2)概率密度分布函数 f ( x ) f(x) f(x)。可以简单粗暴地理解为“随机变量 X X X等于某个值 x x x的概率”,或者从数学上理解为“概率分布函数 F ( x ) F(x) F(x)的导数”即可:
f ( x ) = d F ( x ) d x = lim ⁡ Δ → 0 P ( x ≤ X ≤ x + Δ x ) Δ x = lim ⁡ Δ → 0 F ( x + Δ x ) − F ( x ) Δ x f(x) = \frac{ {\rm d} F(x)}{ {\rm d} x} = \lim_{\Delta \rightarrow 0} \frac{ P \left( x \leq X \leq x + \Delta x\right)}{\Delta x} = \lim_{\Delta \rightarrow 0} \frac{F \left( x + \Delta x \right) - F(x)}{\Delta x} f(x)=dxdF(x)=Δ0limΔxP(xXx+Δx)=Δ0limΔxF(x+Δx)F(x)由此得出
F ( x ) = ∫ ∞ x f ( x ) d x F(x) = \int _\infty ^x f(x) {\rm d} x F(x)=xf(x)dx随机变量 X X X的数学期望:
x ~ = M [ X ] = ∫ − ∞ ∞ x f ( x ) d x \tilde x = M \left[ X \right] = \int _{-\infty} ^\infty x f(x) {\rm d} x x~=M[X]=xf(x)dx随机变量 X X X m m m – 阶矩:
x ~ m = ∫ − ∞ ∞ x m f ( x ) d x \tilde x^m = \int _{-\infty} ^\infty x^m f(x) {\rm d} x x~m=xmf(x)dx随机变量 X X X m m m – 阶中心矩:
M [ ( X − x ~ ) m ] = ∫ − ∞ ∞ ( X − x ~ ) m f ( x ) d x M \left[ \left( X - \tilde x \right)^m \right] = \int _{-\infty} ^\infty \left( X - \tilde x \right)^m f(x) {\rm d} x M[(Xx~)m]=(Xx~)mf(x)dx方差(其实就是二阶中心矩):
M [ ( X − x ~ ) 2 ] = ∫ − ∞ ∞ ( X − x ~ ) 2 f ( x ) d x M \left[ \left( X - \tilde x \right)^2 \right] = \int _{-\infty} ^\infty \left( X - \tilde x \right)^2 f(x) {\rm d} x M[(Xx~)2]=(Xx~)2f(x)dx当考虑时间时,样本的均值可以等同于数学期望:
m x ( t ) = x ~ ( t ) = M [ X ( t ) ] = ∫ − ∞ ∞ x f ( x , t ) d x , D x ( t ) = D [ X ( t ) ] = ∫ − ∞ ∞ [ X ( t ) − m x ( t ) ] 2 f ( x , t ) d x m_x (t) = \tilde x(t) = M \left[ X(t) \right] = \int _{-\infty} ^\infty x f(x, t) {\rm d} x, \\ D_x (t) = D \left[ X(t) \right] = \int _{-\infty} ^\infty \left[ X(t) - m_x (t) \right]^2 f(x, t) {\rm d} x mx(t)=x~(t)=M[X(t)]=xf(x,t)dx,Dx(t)=D[X(t)]=[X(t)mx(t)]2f(x,t)dx而对于不同时刻 t 1 , t 2 t_1, t_2 t1,t2的随机过程来说,同样可以有数学期望:
M [ X ( t 1 ) X ( t 2 ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ x 1 x 2 f ( x 1 , t 1 , x 2 , t 2 ) d x 1 d x 2 = R ( t 1 , t 2 ) M \left[ X\left( t_1 \right) X\left( t_2 \right) \right] = \int_{-\infty} ^\infty \int_{-\infty} ^\infty x_1 x_2 f \left( x_1, t_1, x_2, t_2 \right) {\rm d} x_1 {\rm d} x_2 = R \left( t_1, t_2 \right) M[X(t1)X(t2)]=x1x2f(x1,t1,x2,t2)dx1dx2=R(t1,t2)称为相关函数。相关函数表征了不同时刻之间随机变量的联系

对于一个随机变量 x x x,其在不同时刻的相关函数 R x ( t 1 , t 2 ) R_x \left( t_1, t_2 \right) Rx(t1,t2)称为 x x x自相关函数。而对于两个不同的随机变量 x , y x,y x,y,在不同时刻的相关函数 R x y ( t 1 , t 2 ) R_{xy} \left( t_1, t_2 \right) Rxy(t1,t2)称为互相关函数。显然,当 t 2 = t 1 + τ t_2 = t_1 + \tau t2=t1+τ时,自相关函数还可以表示为
R ( τ ) = M [ X ( t 1 ) X ( t 1 + τ ) ] = ∫ − ∞ ∞ d x 1 ∫ − ∞ ∞ x 1 x 2 f ( x 1 , x 2 , τ ) d x 2 R (\tau) = M \left[ X\left( t_1 \right) X\left( t_1 + \tau \right) \right] = \int_{-\infty} ^\infty {\rm d} x_1 \int_{-\infty} ^\infty x_1 x_2 f \left( x_1, x_2, \tau \right) {\rm d} x_2 R(τ)=M[X(t1)X(t1+τ)]=dx1x1x2f(x1,x2,τ)dx2

2. 各态遍历性

对于具有各态遍历性的静定过程,以下公式成立:
x ~ = x ˉ , x 1 x 2 ~ = x 1 x 2 ‾ \tilde x = \bar x, \quad \widetilde{x_1 x_2} = \overline{x_1 x_2} x~=xˉ,x1x2 =x1x2同时,由于具有各态遍历性,因而随机变量的平均值不会因采样时间段而改变:
x ˉ = lim ⁡ T → ∞ 1 2 T ∫ − T T x ( t ) d t = lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) d t \bar x = \lim _{T \rightarrow \infty} \frac{1}{2T} \int_{-T} ^T x (t) {\rm d} t = \lim _{T \rightarrow \infty} \frac{1}{T} \int_{0} ^T x (t) {\rm d} t xˉ=Tlim2T1TTx(t)dt=TlimT10Tx(t)dt因而自相关函数为
R ( τ ) = x 1 x 2 ‾ = lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) x ( t + τ ) d t R (\tau) = \overline{x_1 x_2} = \lim _{T \rightarrow \infty} \frac{1}{T} \int _0 ^T x(t) x(t + \tau) {\rm d} t R(τ)=x1x2=TlimT10Tx(t)x(t+τ)dt

3. 相关函数的性质

以下给出相关函数的一些性质:
R x y ( τ ) = R y x ( − τ ) ; R_{xy} (\tau) = R_{yx} (-\tau); Rxy(τ)=Ryx(τ); R y x ( τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T y ( t ) x ( t + τ ) d t ; R_{yx} (\tau) = \lim _{T \rightarrow \infty} \frac{1}{2T} \int _{-T} ^T y(t) x(t + \tau) {\rm d} t; Ryx(τ)=Tlim2T1TTy(t)x(t+τ)dt; R y x ( − τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T y ( t ) x ( t − τ ) d t R_{yx} (-\tau) = \lim _{T \rightarrow \infty} \frac{1}{2T} \int _{-T} ^T y(t) x(t - \tau) {\rm d} t Ryx(τ)=Tlim2T1TTy(t)x(tτ)dt而若设 t 1 = t − τ t_1 = t - \tau t1=tτ
R y x ( − τ ) = lim ⁡ T → ∞ 1 2 T ∫ − T T y ( t 1 + τ ) x ( t 1 ) d t = R x y ( τ ) R_{yx} (-\tau) = \lim _{T \rightarrow \infty} \frac{1}{2T} \int _{-T} ^T y(t_1 + \tau) x(t_1) {\rm d} t = R_{xy} (\tau) Ryx(τ)=Tlim2T1TTy(t1+τ)x(t1)dt=Rxy(τ) τ = 0 \tau=0 τ=0时:
R x ( 0 ) = M [ X 2 ( t ) ] = x 2 ‾ = D x R_x (0) = M \left[ X^2 (t) \right] = \overline{x^2} = D_x Rx(0)=M[X2(t)]=x2=Dx τ → ∞ \tau \rightarrow \infty τ时:
R x ( τ → ∞ ) = ( x ~ ) 2 = ( x ˉ ) 2 R_x ( \tau \rightarrow \infty ) = \left( \tilde x \right) ^2 = \left( \bar x \right) ^2 Rx(τ)=(x~)2=(xˉ)2特别地,白噪声的相关函数为:
R x ( τ ) = N 2 δ ( τ ) R_x (\tau) = N^2 \delta (\tau) Rx(τ)=N2δ(τ)

4. 确定相关函数的实验方法

对于静定各态遍历系统,其相关函数:
R x ( τ ) = X ( t ) X ( t + τ ) ‾ = lim ⁡ T → ∞ 1 T ∫ 0 T x ( t ) x ( t + τ ) d t R_x(\tau) = \overline{X(t) X(t + \tau)} = \lim_{T \rightarrow \infty} \frac{1}{T} \int_0 ^T x(t) x(t + \tau) {\rm d} t Rx(τ)=X(t)X(t+τ)=TlimT10Tx(t)x(t+τ)dt其估计值为
R ^ x ( τ ) = 1 T ∫ 0 T x ( t ) x ( t − τ ) d t \hat R_x (\tau) = \frac{1}{T} \int_0 ^T x(t) x(t - \tau) {\rm d} t R^x(τ)=T10Tx(t)x(tτ)dt在实际中,为了使得到的估计值尽量准确,应使实验时间 T T T尽可能长。

5. 通过线性动态系统的静定随机信号的特性

设某随机信号 u ( t ) u(t) u(t),其相关函数为 R u ( τ ) R_u (\tau) Ru(τ),则其通过具有脉冲信号 K ( t ) K(t) K(t)的系统后,得到的输出依然是随机信号:
x ( t ) = ∫ − ∞ ∞ K ( λ ) u ( t − λ ) d λ = K ( λ ) ∗ u ( λ ) (2) x(t) = \int_{-\infty} ^\infty K(\lambda) u(t - \lambda) {\rm d} \lambda = K(\lambda) * u( \lambda) \tag{2} x(t)=K(λ)u(tλ)dλ=K(λ)u(λ)(2)即为二者卷积。
对输出 x x x求数学期望:
M [ x ( t ) ] = ∫ − ∞ ∞ K ( λ ) M [ u ( t − λ ) ] d λ M \left[ x(t) \right] = \int _{-\infty} ^\infty K(\lambda) M \left[ u(t - \lambda) \right] {\rm d} \lambda M[x(t)]=K(λ)M[u(tλ)]dλ而在 t + τ t+\tau t+τ时刻:
x ( t + τ ) = ∫ − ∞ ∞ K ( η ) u ( t + τ − η ) d η x(t + \tau) = \int_{-\infty} ^\infty K(\eta) u(t + \tau - \eta) {\rm d} \eta x(t+τ)=K(η)u(t+τη)dη则可以计算 x x x的相关函数:
R x ( τ ) = M [ x ( t ) x ( t + τ ) ] = M [ ∫ − ∞ ∞ K ( λ ) u ( t − λ ) d λ ∫ − ∞ ∞ K ( η ) u ( t + τ − η ) d η ] = ∫ − ∞ ∞ K ( λ ) d λ ∫ − ∞ ∞ M [ u ( t − λ ) u ( t + τ − η ) ] K ( η ) d η \begin{aligned} R_x (\tau) &= M \left[ x(t) x(t + \tau) \right] \\ &= M \left[ \int_{-\infty} ^\infty K(\lambda) u(t - \lambda) {\rm d} \lambda \int_{-\infty} ^\infty K(\eta) u(t + \tau - \eta) {\rm d} \eta \right] \\ &= \int_{-\infty} ^\infty K(\lambda) {\rm d} \lambda \int_{-\infty} ^\infty M \left[ u(t - \lambda) u(t + \tau - \eta) \right] K(\eta) {\rm d} \eta \end{aligned} Rx(τ)=M[x(t)x(t+τ)]=M[K(λ)u(tλ)dλK(η)u(t+τη)dη]=K(λ)dλM[u(tλ)u(t+τη)]K(η)dη t ′ = t − λ t' = t - \lambda t=tλ,则
M [ u ( t ′ ) u ( t ′ + λ + τ − η ) ] = R u ( τ + λ − η ) M \left[ u(t') u(t' + \lambda+ \tau - \eta) \right] = R_u (\tau + \lambda - \eta) M[u(t)u(t+λ+τη)]=Ru(τ+λη)代入上式有
R x ( τ ) = ∫ − ∞ ∞ K ( λ ) d λ ∫ − ∞ ∞ R u ( τ + λ − η ) K ( η ) d η (3) R_x (\tau) = \int_{-\infty} ^\infty K(\lambda) {\rm d} \lambda \int_{-\infty} ^\infty R_u (\tau + \lambda - \eta) K(\eta) {\rm d} \eta \tag{3} Rx(τ)=K(λ)dλRu(τ+λη)K(η)dη(3)另外, x x x u u u的互相关函数为(用到式(2)):
R x u ( τ ) = M [ x ( t ) u ( t − τ ) ] = M { [ ∫ − ∞ ∞ K ( λ ) u ( t − λ ) d λ ] u ( t − τ ) } = ∫ − ∞ ∞ K ( λ ) M [ u ( t − τ ) u ( t − λ ) ] d λ \begin{aligned} R_{xu} (\tau) &= M \left[ x(t) u(t - \tau ) \right] \\ &= M \left\{ \left[ \int_{-\infty} ^\infty K(\lambda) u(t - \lambda) {\rm d} \lambda \right] u(t - \tau) \right\} \\ &= \int_{-\infty} ^\infty K(\lambda) M \left[ u(t - \tau) u(t - \lambda) \right] {\rm d} \lambda \end{aligned} Rxu(τ)=M[x(t)u(tτ)]=M{[K(λ)u(tλ)dλ]u(tτ)}=K(λ)M[u(tτ)u(tλ)]dλ t − τ = t ′ t - \tau = t' tτ=t,则上式为
R x u ( τ ) = ∫ − ∞ ∞ K ( λ ) M [ u ( t ′ ) u ( t ′ + τ − λ ) ] d λ R_{xu} (\tau) = \int_{-\infty} ^\infty K(\lambda) M \left[ u(t') u(t' + \tau - \lambda) \right] {\rm d} \lambda Rxu(τ)=K(λ)M[u(t)u(t+τλ)]dλ又由于 M [ u ( t ′ ) u ( t ′ + τ − λ ) ] = R u ( τ − λ ) M \left[ u(t') u(t' + \tau - \lambda) \right] = R_u (\tau - \lambda) M[u(t)u(t+τλ)]=Ru(τλ),代入上式有
R x u ( τ ) = ∫ − ∞ ∞ K ( λ ) R u ( τ − λ ) d λ (4) R_{xu} (\tau) = \int_{-\infty} ^\infty K(\lambda) R_u (\tau - \lambda) {\rm d} \lambda \tag{4} Rxu(τ)=K(λ)Ru(τλ)dλ(4)在实际情况下,当 λ < 0 \lambda < 0 λ<0 K ( λ ) ≡ 0 K(\lambda) \equiv 0 K(λ)0,故式(3)(4)还可以写为
R x ( τ ) = ∫ 0 ∞ K ( λ ) d λ ∫ 0 ∞ R u ( τ + λ − η ) K ( η ) d η (3) R_x (\tau) = \int_0 ^\infty K(\lambda) {\rm d} \lambda \int_0 ^\infty R_u (\tau + \lambda - \eta) K(\eta) {\rm d} \eta \tag{3} Rx(τ)=0K(λ)dλ0Ru(τ+λη)K(η)dη(3) R x u ( τ ) = ∫ 0 ∞ K ( λ ) R u ( τ − λ ) d λ (4) R_{xu} (\tau) = \int_0 ^\infty K(\lambda) R_u (\tau - \lambda) {\rm d} \lambda \tag{4} Rxu(τ)=0K(λ)Ru(τλ)dλ(4)

6. 系统输出的均方误差计算

前文提到,当 τ = 0 \tau=0 τ=0时:
R x ( 0 ) = M [ X 2 ( t ) ] = x 2 ‾ = D x R_x (0) = M \left[ X^2 (t) \right] = \overline{x^2} = D_x Rx(0)=M[X2(t)]=x2=Dx即为系统的方差。上式即(用到式(4)):
R x ( 0 ) = R x ( τ ) ∣ τ = 0 = ∫ 0 ∞ K ( λ ) d λ ∫ 0 ∞ R u ( τ + λ − η ) K ( η ) d η ∣ τ = 0 = ∫ 0 ∞ K ( λ ) d λ ∫ 0 ∞ R u ( λ − η ) K ( η ) d η ⏟ R x u ( λ ) = ∫ 0 ∞ K ( λ ) R x u ( λ ) d λ (5) \begin{aligned} R_x (0) &= R_x (\tau) \big\rvert _{\tau = 0} = \int_0 ^\infty K(\lambda) {\rm d} \lambda \int_0 ^\infty R_u (\tau + \lambda - \eta) K(\eta) {\rm d} \eta \Big\rvert _{\tau = 0} \\ &= \int_0 ^\infty K(\lambda) {\rm d} \lambda \underbrace{\int_0 ^\infty R_u ( \lambda - \eta) K(\eta) {\rm d} \eta}_{R_{xu} (\lambda)} \\ &= \int_0 ^\infty K(\lambda) R_{xu} (\lambda) {\rm d} \lambda \tag{5} \end{aligned} Rx(0)=Rx(τ) τ=0=0K(λ)dλ0Ru(τ+λη)K(η)dη τ=0=0K(λ)dλRxu(λ) 0Ru(λη)K(η)dη=0K(λ)Rxu(λ)dλ(5)因此
D x = x 2 ‾ = ∫ 0 ∞ K ( λ ) R x u ( λ ) d λ (6) D_x = \overline{x^2} = \int_0 ^\infty K(\lambda) R_{xu} (\lambda) {\rm d} \lambda \tag{6} Dx=x2=0K(λ)Rxu(λ)dλ(6)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值