1、智能体是什么?
广义上,智能体(Agent)在人工智能领域中指的是一种能够感知环境并根据感知到的信息作出决策和行动的代理体。它可以是软件、硬件或一个系统,具备自主性、适应性和交互能力。
而我们通常说的智能体(Agent)是在大语言模型的基础上衍生出来的能够根据用户需求和偏好定制自己的 AI 助理,就是专门为了解决某一具体问题的定制 AI 自动服务。
有些人可能又要问了,大语言模型是什么?
我们可以把大模型想象成一个超级图书管理员。
管理员大脑中有 100万亿个记忆抽屉(神经网络参数),每个抽屉存储着词语、图像、声音之间的关联规则,远超普通图书馆员的千倍规模。
它可以用3年时间读完 3亿本书+100亿篇论文+整个互联网内容(预训练),不仅记住文字,还可以自动总结。
当你询问一个问题时,它可以快速检索关联内容并分析整理给你解答。
这个"超级管理员"现在不仅管理着图书馆,还能创作新书、修复残卷、预测未来,这正是现实中GPT-4、文心大模型等系统在数字世界的具象化体现。
2、为什么会有智能体?
既然有了大模型这么厉害的东西,为什么还会有智能体?主要还是因为大模型不够强大,具体因为有以下三点:
1.大模型训练数据的时效性,导致无法回答训练日期之后的知识。
2.大模型训练使用的是公开数据,针对企业私有数据(细分领域),无法进行回答。
3.上下文(Token)的限制,无法处理长文本
智能体(AI Agent)的出现就是为了解决这一问题的,大模型时效性不及时,我们可以联网搜索将结果投喂给大模型,让它基于投喂内容进行回答。大模型会出现幻觉并且不能够回答某个垂直领域(例如:旅游、法律、美食)的问题,我们可以将其接入细分领域知识库,让它基于知识库内容进行回答。并且我们可以提供一系列的工具或者插件供其在运行中调用。
智能体(AI Agent)是应用了大模型能力的 Agent。以 GPT 为代表的大模型的出现,将 Agent 的能力提高到了前所未有的高度。
3、当下主流的智能体平台有哪些
下面这些智能体平台都是基于AI Agent的技术概念落地的产品。
- 字节跳动扣子Coze:https://www.coze.cn (推荐使用)
字节跳动扣子(Coze)智能体平台是我最先接触的一个智能体平台,目前有两个版本(国际/国内),集成多模态大模型接口及插件生态,聚焦内容生成与个性化定制,为新媒体、电商等垂直领域提供AI生产力工具,同步拓展跨行业解决方案。
- 百度文心智能体平台:https://agents.baidu.com/center
作为国内首批推出的智能体平台之一,依托百度在搜索、AI等领域深厚的生态积累和先发布局优势,已在智能体市场占据重要地位。该平台以知识增强大语言模型为核心技术架构,深度融合语义理解、知识图谱等基础能力,专注于文本交互类应用开发,尤其在知识问答、智能客服等领域形成技术优势。
- 腾讯元器:https://yuanqi.tencent.com/agent-shop
腾讯元器智能体平台深度集成微信生态,原生支持智能体一键部署至公众号/小程序,提供多模态交互引擎(文本/语音/图像),典型应用如智能客服系统,实现全渠道自然语义解析。
- 阿里魔塔智能体平台:https://modelscope.cn/home
魔塔智能体平台是阿里巴巴在人工智能领域的重要布局之一,它聚焦于电商、物流等阿里巴巴核心业务场景,并逐步向其他行业拓展。 该平台致力于打造智能、高效、可信赖的智能体服务,助力企业实现数字化转型和智能化升级。
- 智谱清言智能体中心:https://chatglm.cn/main/toolsCenter?lang=zh
智谱清言智能体中心基于GLM-4大模型提供无代码个性化智能体定制,支持多模态交互与长文本处理,深耕中文环境并覆盖多行业场景(如心理咨询、AUTOSAR工程等),结合云端与离线部署保障数据安全
- 通用智能体平台Menus : https://manus.im/
Manus作为国内首款通用型智能体平台,基于自主任务执行框架实现跨领域复杂任务自动化(如行程规划/金融分析/简历筛选),通过端到端工作流闭环设计突破多系统操作壁垒,其商业化落地验证了通用Agent在复杂场景中的工程化可行性,现已成为AI智能体产业化的标杆案例。
当然除了上述的几个智能体平台外还有很多的其它的智能体平台待大家一同探讨。并且Manus已经联合阿里在打造国内版的通用智能体大模型,相信不久后就会亮相中国市场。
4、智能体能做什么?
智能体(AI Agent)的应用领域非常的广泛。
大可以是一个生产级别的应用,小可以是一个简单的聊天Chat。
下图是Coze官方推荐的智能体,可以直观感受下,我们也可以制作智能体上架到平台商店。
5、智能体构建原则?
AI Agent = LLM(大模型) + Planning(规划)+ memory(记忆) + Tools(工具)
在构建智能体之前,我们首先需要清楚地知道自己的需求,了解当下智能体的能力边界。
参考上述公式,对需求进行详细拆解,并对应到上述的模块,然后一步一步构建即可。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!