一文带你搞懂什么是智能体(AI Agent)

1、智能体是什么?

广义上,智能体(Agent)在人工智能领域中指的是一种能够感知环境并根据感知到的信息作出决策和行动的代理体。它可以是软件、硬件或一个系统,具备自主性、适应性和交互能力。

而我们通常说的智能体(Agent)是在大语言模型的基础上衍生出来的能够根据用户需求和偏好定制自己的 AI 助理,就是专门为了解决某一具体问题的定制 AI 自动服务。

有些人可能又要问了,大语言模型是什么?

我们可以把大模型想象成一个超级图书管理员‌。

管理员大脑中有 ‌100万亿个记忆抽屉‌(神经网络参数),每个抽屉存储着词语、图像、声音之间的关联规则,远超普通图书馆员的千倍规模。

它可以用3年时间读完 ‌3亿本书+100亿篇论文+整个互联网内容‌(预训练),不仅记住文字,还可以自动总结。

当你询问一个问题时,它可以快速检索关联内容并分析整理给你解答。

这个"超级管理员"现在不仅管理着图书馆,还能创作新书、修复残卷、预测未来,这正是现实中GPT-4、文心大模型等系统在数字世界的具象化体现。

2、为什么会有智能体?

既然有了大模型这么厉害的东西,为什么还会有智能体?主要还是因为大模型不够强大,具体因为有以下三点:

1.大模型训练数据的时效性,导致无法回答训练日期之后的知识。

2.大模型训练使用的是公开数据,针对企业私有数据(细分领域),无法进行回答。

3.上下文(Token)的限制,无法处理长文本

智能体(AI Agent)的出现就是为了解决这一问题的,大模型时效性不及时,我们可以联网搜索将结果投喂给大模型,让它基于投喂内容进行回答。大模型会出现幻觉并且不能够回答某个垂直领域(例如:旅游、法律、美食)的问题,我们可以将其接入细分领域知识库,让它基于知识库内容进行回答。并且我们可以提供一系列的工具或者插件供其在运行中调用。

智能体(AI Agent)是应用了大模型能力的 Agent。以 GPT 为代表的大模型的出现,将 Agent 的能力提高到了前所未有的高度。

3、当下主流的智能体平台有哪些

下面这些智能体平台都是基于AI Agent的技术概念落地的产品。

  • 字节跳动扣子Coze:https://www.coze.cn (推荐使用)

img

字节跳动扣子(Coze)智能体平台是我最先接触的一个智能体平台,目前有两个版本(国际/国内),集成多模态大模型接口及插件生态,聚焦内容生成与个性化定制,为新媒体、电商等垂直领域提供AI生产力工具,同步拓展跨行业解决方案。

  • 百度文心智能体平台:https://agents.baidu.com/center

img

作为国内首批推出的智能体平台之一,依托百度在搜索、AI等领域深厚的生态积累和先发布局优势,已在智能体市场占据重要地位。该平台以知识增强大语言模型为核心技术架构,深度融合语义理解、知识图谱等基础能力,专注于文本交互类应用开发,尤其在知识问答、智能客服等领域形成技术优势。

  • 腾讯元器:https://yuanqi.tencent.com/agent-shop

img

腾讯元器智能体平台深度集成微信生态,原生支持智能体一键部署至公众号/小程序,提供多模态交互引擎(文本/语音/图像),典型应用如智能客服系统,实现全渠道自然语义解析。

  • 阿里魔塔智能体平台:https://modelscope.cn/home

img

魔塔智能体平台是阿里巴巴在人工智能领域的重要布局之一,它聚焦于电商、物流等阿里巴巴核心业务场景,并逐步向其他行业拓展。 该平台致力于打造智能、高效、可信赖的智能体服务,助力企业实现数字化转型和智能化升级。

  • 智谱清言智能体中心:https://chatglm.cn/main/toolsCenter?lang=zh

img

智谱清言智能体中心基于GLM-4大模型提供无代码个性化智能体定制,支持多模态交互与长文本处理,深耕中文环境并覆盖多行业场景(如心理咨询、AUTOSAR工程等),结合云端与离线部署保障数据安全

  • 通用智能体平台Menus : https://manus.im/

img

Manus作为国内首款通用型智能体平台,基于自主任务执行框架实现跨领域复杂任务自动化(如行程规划/金融分析/简历筛选),通过端到端工作流闭环设计突破多系统操作壁垒,其商业化落地验证了通用Agent在复杂场景中的工程化可行性,现已成为AI智能体产业化的标杆案例。

img

当然除了上述的几个智能体平台外还有很多的其它的智能体平台待大家一同探讨。并且Manus已经联合阿里在打造国内版的通用智能体大模型,相信不久后就会亮相中国市场。

4、智能体能做什么?

智能体(AI Agent)的应用领域非常的广泛。

img

大可以是一个生产级别的应用,小可以是一个简单的聊天Chat。

下图是Coze官方推荐的智能体,可以直观感受下,我们也可以制作智能体上架到平台商店。

img

5、智能体构建原则?

AI Agent = LLM(大模型) + Planning(规划)+ memory(记忆) + Tools(工具)

在构建智能体之前,我们首先需要清楚地知道自己的需求,了解当下智能体的能力边界。

img

参考上述公式,对需求进行详细拆解,并对应到上述的模块,然后一步一步构建即可。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

<think>好的,用户想了解智能体在计算机科学中的定义和应用场景。首先,我需要明确“智能体”的定义。根据常见的知识,智能体Agent)通常指能够感知环境并采取行动以实现目标的实体。这可能包括软件程序、机器人或其他自动化系统。接下来,要结合用户提供的引用内容,看看是否有相关的信息可以支持回答。 用户提供的引用中,引用[1]提到人工智能的定义,强调通过计算机程序实现智能行为,模拟人类的学习、推理和问题解决能力。这可以和智能体的定义联系起来,因为智能体通常属于人工智能的范畴。引用[2]讨论了计算机视觉的应用,其中提到机器学习深度学习技术,特别是CNN。这可能与智能体在感知环境方面的应用有关,比如视觉感知。引用[3]涉及导数在AI中的应用,尤其是梯度下降法,这可能与智能体的学习机制相关。 接下来,需要确定智能体的应用场景。常见的应用包括自主机器人、智能推荐系统、自动化交易系统等。例如,自主机器人需要感知环境并做出决策,这符合智能体的定义。智能推荐系统通过分析用户行为(感知环境)来推荐内容(采取行动),也是一个应用场景。此外,自动化交易系统根据市场数据自动执行交易,这也是智能体的体现。 需要确保回答结构清晰,分点说明定义和应用场景,并自然地融入引用内容。例如,在定义部分,可以引用[1]中关于AI的定义,说明智能体作为其子领域。在应用场景中,可以结合引用[2]提到的计算机视觉技术,说明智能体在图像识别中的应用。同时,梯度下降法(引用[3])可能用于智能体的学习过程,优化其决策策略。 最后,生成相关问题时要围绕智能体的核心概念和应用,确保问题具有相关性,比如询问智能体的分类、核心技术,或具体应用案例。需要检查是否符合格式要求,如数学表达式的正确使用、引用标识的位置等。确保回答准确,引用恰当,结构清晰。</think>### 智能体的定义与应用场景 #### 1. 智能体的定义 在计算机科学中,**智能体Agent)**指能够感知环境并通过自主决策采取行动以实现目标的实体[^1]。其核心特征包括: - **自主性**:无需外部干预即可独立运行; - **反应性**:实时感知环境并作出响应; - **目标导向性**:通过规划或学习优化行为路径; - **社会性**(可选):与其他智能体协作或竞争。 智能体可以是软件程序(如聊天机器人)、物理设备(如自动驾驶汽车)或混合系统。其理论基础与人工智能紧密相关,尤其是模仿人类智能的推理和学习能力。 #### 2. 应用场景 **2.1 自主机器人** 通过传感器感知物理环境(如摄像头、激光雷达),结合强化学习算法实现路径规划和避障。例如,仓储机器人利用视觉识别技术(引用[2]中提到的CNN)定位货物并优化搬运路线。 **2.2 智能推荐系统** 分析用户行为数据(如点击、购买记录),基于马尔可夫决策过程动态调整推荐策略。例如,电商平台通过智能体预测用户偏好并生成个性化商品列表。 **2.3 自动化交易系统** 实时处理金融市场数据(如股价、交易量),利用梯度下降法(引用[3])优化交易模型参数,实现高频交易或风险对冲。 **2.4 虚拟助手** 集成自然语言处理(NLP)和知识图谱技术,通过多轮对话解决用户查询。例如,客服智能体结合语义理解和上下文推理提供精准应答。 #### 3. 技术实现示例 ```python class ReinforcementLearningAgent: def __init__(self, state_space, action_space): self.q_table = np.zeros((state_space, action_space)) # Q值表 def choose_action(self, state, epsilon): if np.random.rand() < epsilon: # 探索 return np.random.choice(self.action_space) else: # 利用 return np.argmax(self.q_table[state]) def update_q_table(self, state, action, reward, next_state, alpha, gamma): self.q_table[state][action] += alpha * (reward + gamma * np.max(self.q_table[next_state]) - self.q_table[state][action]) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值