未分类
文章平均质量分 54
零零碎碎的分享
郁柳_Fudan
一个关注R语言生信分析教程分享的博主,欢迎各位同道与我交流!
展开
-
常见4种基因ID如何区别?如何转换?
常用的4中基因ID类型:Gene symbolEntrez IDEnsembl IDUniprot ID原创 2022-08-05 16:15:59 · 23436 阅读 · 1 评论 -
如何更新已安装过的Bioconductor软件包?
的“Update Installed。原创 2022-08-05 14:55:51 · 5158 阅读 · 0 评论 -
如何从Rstudio中导出合适的图片?
博主希望导出可编辑的高质量图片,试了很多种方法,还是导出。原创 2022-08-01 19:54:40 · 2976 阅读 · 1 评论 -
如何在R包中输入合适的数据格式?
这是2个步骤,不能因为一个函数可以完成(如DESeq2),就以为是一步!数据标准化是标准化、差异检验是差异检验。转录组不同分析用什么数据?原创 2022-08-01 12:01:20 · 210 阅读 · 0 评论 -
raw_count、tpm、fpkm、rpkm如何选择
转录组测序中常见的数据类型有:raw_count、tpm、fpkm、rpkm。本文进行简单辨析:一、概念1 raw_countRNA-seq数据中,raw_count一般是指mapped到基因外显子区域的reads数目。比如说htseq,STAR,或者RSEM等NGS分析流程计算产生的counts值。其中RSEM(RNA-Seq by Expectation-Maximization),考虑到一条read 可能会匹配多个exon位置,故而其产生的为expected_count。2 TPM原创 2022-05-04 11:41:05 · 13675 阅读 · 0 评论 -
如何根据数据框的列名提取指定列?
View(gene_cl)gene_cl 格式为 dataframe,想提取列名为 'Sample','SMC4','t_gleason_sum' 的3列,尝试以下三种方法:方法1library("dplyr")gene_gleason=select(gene_cl,'Sample','SMC4','t_gleason_sum')select(x,colname1,colname2,colname3...) 得到的 gene_gleason 为dataframe,且列名..原创 2022-04-25 16:04:36 · 7186 阅读 · 0 评论 -
RNA-seq技术原理
参考:【陈巍学基因】RNA-seq - 知乎一、基本原理去除rRNA、tRNA等干扰,因此利用高等生物的mRNA都有Poly(A)尾巴这个特点,用带有Poly(T)探针的磁珠与总RNA进行杂交。然后Poly(T)探针就和带Poly(A)尾巴的mRNA结合在一起,接下来就回收磁珠,然后把这些带Poly(A)的mRNA从磁珠上洗脱下来。第6步在cDNA两端加上A序列,再加上Y型序列,就成了标准的测序文库,这个标准的测序文库就可以拿到HiSeq测序仪上进行测序了。其中第4部得到的能够比对到基.原创 2022-03-19 23:49:29 · 6207 阅读 · 0 评论 -
matrix和dataFrame有什么区别?
一、数据格式matrix 中只能有一种数据格式,全为 character 或者 numeric;dataframe 中可有多种格式,每列的格式相同。注意:将 dataframe 转为 matrix 时,如果 dataframe 中有字符串如“ACTB”等,会导致 matrix 中全部元素都变为 character 格式。二、dataframe中行名不允许重复matrix 中行名允许重复,dataframe 中行名不允许重复注意: 将有重复行名的 matrix 转为 datafra原创 2022-04-25 11:44:32 · 1819 阅读 · 0 评论 -
check.names=FALSE参数处理读入csv文件乱码
现有一matrix如下:View(puried_data)write.csv(puried_data,file = 'puried_data.csv')尝试读入该matrix时遇到困难,puried_data1<- read.csv(file = "puried_data.csv")不仅rowname错误,colname也出现了乱码 ——列名乱码的原因下代码可正常读取:puried_data2<- read.csv(file =........原创 2022-04-24 22:11:10 · 3072 阅读 · 0 评论 -
如何下载旧版本R和R包?
旧版本R包原创 2022-03-18 15:23:51 · 8766 阅读 · 0 评论 -
DESeq2,EdgeR,limma对比
参考:【陈巍学基因】RNA-seq - 知乎关于基因差异化的那些事 edger Deseq2和limma的使用及一些总结_forever luckness 的博客-CSDN博客_deseq2和limma补:芯片和高通量测序(HTS)基因芯片的差异表达分析而言,由于普遍认为其数据是服从正态分布,因此差异表达分析无非就是用t检验和或者方差分析应用到每一个基因上。目前在基因芯片的分析用的最多的就是limma。高通量一次性找的基因多,于是就需要对多重试验进行矫正,控制假阳性。高.原创 2022-03-20 00:29:47 · 7700 阅读 · 0 评论