raw_count、tpm、fpkm、rpkm如何选择

转录组测序中常见的数据类型有:raw_count、tpm、fpkm、rpkm。本文进行简单辨析:

一、概念

1 raw_count

RNA-seq数据中,raw_count一般是指mapped到基因外显子区域的reads数目。比如说htseq,STAR,或者RSEM等NGS分析流程计算产生的counts值。其中RSEM(RNA-Seq by Expectation-Maximization),考虑到一条read 可能会匹配多个exon位置,故而其产生的为expected_count。

2 tpm

TPM(Transcripts Per Million),每100000个RNA reads,有多少个来自某基因的转录本。在计算方法上,TPM首先对基因长度进行归一化,然后再对测序深度(mRNA reads 总量)进行归一化,最终使得每个样本建库大小可以比较

基因长度归一化原因:同样表达水平下,某基因长度越长,对应得到的reads数越多。归一化后同一样本的不同基因表达水平间具有可比性;

测序深度归一化原因:不同样本的mRNA reads总量有高有底,归一化后不同样本的基因表达水平间具有可比性;

3 FPKM和RPKM

已经过时了,建议不要使用!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郁柳_Fudan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值