【负荷预测】基于Gradient-boosting的负荷预测研究(Python代码实现)

                💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、引言

二、Gradient-boosting算法概述

三、基于Gradient-boosting的负荷预测方法

1. 数据预处理

2. 特征工程

3. 模型训练与评估

4. 模型优化

四、实验结果与分析

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于Gradient-boosting的负荷预测研究

一、引言

负荷预测作为电力系统和建筑能耗管理的重要组成部分,其准确性对于电力系统的安全稳定运行和能源的有效管理至关重要。随着大数据和机器学习技术的快速发展,Gradient-boosting算法作为一种高效且强大的集成学习算法,在负荷预测领域展现出了巨大的潜力。本文旨在探讨基于Gradient-boosting的负荷预测方法,并分析其在实际应用中的性能和优势。

二、Gradient-boosting算法概述

Gradient-boosting(梯度提升)算法是一种基于迭代思想的集成学习算法,它通过结合多个弱学习器来构建一个强学习器。在每一次迭代中,Gradient-boosting算法都会根据当前模型的预测误差来训练一个新的弱学习器,并将其加入到现有的模型中,以减小整体的预测误差。这种逐步优化的过程使得Gradient-boosting算法在处理复杂预测任务时表现出色。

其中,eXtreme Gradient Boosting(XGBoost)是Gradient-boosting算法的一种高效实现,它在原有的Gradient Boosting Decision Tree(GBDT)基础上进行了多项改进,包括支持核外计算、优化内存使用、支持分布式计算等,从而在处理大规模数据集时具有更高的效率和精度。

三、基于Gradient-boosting的负荷预测方法

1. 数据预处理

在进行负荷预测之前,首先需要对原始数据进行预处理。这包括数据清洗(如处理缺失值、异常值等)、数据变换(如标准化、归一化等)以及特征选择(选择对预测结果影响较大的特征)等步骤。通过数据预处理,可以提高模型的训练效率和预测精度。

2. 特征工程

特征工程是负荷预测中非常重要的一环。除了基本的时序特征(如时间戳、日期等)外,还可以考虑加入其他相关特征,如气象条件(温度、湿度、风速等)、节假日信息、历史负荷数据等。这些特征的选择和构造对于提高模型的预测性能具有重要意义。

3. 模型训练与评估

在数据预处理和特征工程完成后,可以使用Gradient-boosting算法(如XGBoost)进行模型训练。在训练过程中,需要设置合适的超参数(如学习率、树深、叶节点数等),并通过交叉验证等方法来评估模型的稳定性和泛化能力。训练完成后,可以使用测试集对模型的预测性能进行评估,包括计算预测误差(如MAE、RMSE、MAPE等)和绘制误差分布图等。

4. 模型优化

为了提高模型的预测精度和性能,可以进行进一步的模型优化。这包括调整超参数、使用更复杂的特征组合、引入正则化项防止过拟合等。此外,还可以尝试将Gradient-boosting算法与其他算法结合使用(如集成学习、深度学习等),以形成更强大的预测模型。

四、实验结果与分析

根据已有研究和实践经验,基于Gradient-boosting的负荷预测模型在多个场景下均表现出了优异的性能。例如,在超短期负荷预测中,XGBoost模型相比传统模型在达标率和准确率上都有显著提升。此外,Gradient-boosting算法还具有运行速率快、对硬件设施要求低、可解释性强等优点,使得其在负荷预测领域具有广泛的应用前景。

五、结论与展望

本文探讨了基于Gradient-boosting的负荷预测方法,并分析了其在实际应用中的性能和优势。未来研究可以进一步探索Gradient-boosting算法与其他算法的融合应用,以及多源数据融合技术在负荷预测中的应用等方向,以进一步提高负荷预测的精度和效率。同时,随着智能电网和大数据技术的不断发展,基于Gradient-boosting的负荷预测方法将在能源管理和决策中发挥更加重要的作用。

📚2 运行结果

部分代码:

# 初始化存储各个评估指标的字典。
table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
for i in range(n_out):
    # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
    actual = [float(row[i]) for row in Ytest]  #一列列提取
    # 从测试集中提取实际值。
    predicted = [float(row[i]) for row in predicted_data]
    # 从预测结果中提取预测值。
    mse = mean_squared_error(actual, predicted)
    # 计算均方误差(MSE)。
    mse_dic.append(mse)
    rmse = sqrt(mean_squared_error(actual, predicted))
    # 计算均方根误差(RMSE)。
    rmse_dic.append(rmse)
    mae = mean_absolute_error(actual, predicted)
    # 计算平均绝对误差(MAE)。
    mae_dic.append(mae)
    MApe = mape(actual, predicted)
    # 计算平均绝对百分比误差(MAPE)。
    mape_dic.append(MApe)
    r2 = r2_score(actual, predicted)
    # 计算R平方值(R2)。
    r2_dic.append(r2)
    if n_out == 1:
        strr = '预测结果指标:'
    else:
        strr = '第'+ str(i + 1)+'步预测结果指标:'
    table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

return mse_dic,rmse_dic, mae_dic, mape_dic, r2_dic, table
# 返回包含所有评估指标的字典。

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张惟东.基于CNN-LSTM-Attention的短期电力负荷预测研究[D].兰州理工大学,2022.

[2]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[3]姚芳,汤俊豪,陈盛华,等.基于ISSA-CNN-GRU模型的电动汽车充电负荷预测方法[J].电力系统保护与控制, 2023, 51(16):158-167.

[4]姚程文、杨苹、刘泽健.基于CNN-GRU混合神经网络的负荷预测方法[J].电网技术, 2020, 44(9):8.DOI:10.13335/j.1000-3673.pst.2019.2058.

[5]谢志坚.基于CNN-BAS-GRU模型的短期电力负荷预测研究[J].现代计算机, 2023, 29(21):15-20.

[6]杨超.基于ISSA优化CNN-BiGRU-Self Attention的短期电力负荷预测研究[D].陕西理工大学,2024. 

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值