Hybrid A*算法详解

在这里插入图片描述

1. 引言

Hybrid A算法是一种用于自动驾驶车辆路径规划的高效算法,它巧妙地结合了传统A算法的离散搜索特性和连续空间中的运动学约束。本文将从理论到实践,深入剖析Hybrid A*算法的工作原理和实现细节。

2. 算法原理

2.1 基本概念

Hybrid A算法的核心思想是将连续状态空间离散化,同时保持车辆运动学约束。与传统A算法的主要区别在于:

  1. 状态表示

    • 传统A*:离散网格坐标(x, y)
    • Hybrid A*:连续状态(x, y, θ),其中θ表示航向角
  2. 状态转移

    • 传统A*:八个方向的简单移动
    • Hybrid A*:考虑车辆运动学约束的实际可行路径
  3. 节点信息:每个节点存储的信息包括:

    • 位置坐标(x, y)
    • 航向角(yaw)
    • 转向角(steer)
    • 运动方向(前进/后退)
    • 路径代价
    • 父节点索引

2.2 状态空间设计

class Node:
    def __init__(self, x_ind, y_ind, yaw_ind, direction,
                 x_list, y_list, yaw_list, directions,
                 steer=0.0, parent_index=None, cost=None):
        self.x_index = x_ind
        self.y_index = y_ind
        self.yaw_index = yaw_ind
        self.direction = direction
        self.x_list = x_list
        self.y_list = y_list
        self.yaw_list = yaw_list
        self.directions = directions
        self.steer = steer
        self.parent_index = parent_index
        self.cost = cost

状态空间的离散化参数:

XY_GRID_RESOLUTION = 2.0  # 空间分辨率[m]
YAW_GRID_RESOLUTION = np.deg2rad(15.0)  # 航向角分辨率[rad]
MOTION_RESOLUTION = 0.1  # 路径插值分辨率[m]
N_STEER = 20  # 转向角采样数

2.3 代价函数设计

代价函数是算法性能的关键,包含多个组成部分:

  1. 基础移动代价
arc_l = XY_GRID_RESOLUTION * 1.5  # 基础路径长度
cost = current.cost + added_cost + arc_l  # 总代价计算
  1. 特殊动作惩罚
SB_COST = 100.0  # 换向惩罚成本
BACK_COST = 5.0  # 后退惩罚成本
STEER_CHANGE_COST = 5.0  # 转向角变化惩罚成本
STEER_COST = 1.0  # 转向角惩罚成本
  1. 启发式代价
H_COST = 5.0  # 启发式成本权重

3. 车辆模型

3.1 自行车模型

采用简化的自行车模型来表示车辆运动学特性:

class Car:
    WB = 3.0  # 轴距[m]
    W = 2.0   # 车宽[m]
    LF = 3.3  # 前悬长度[m]
    LB = 1.0  # 后悬长度[m]
    MAX_STEER = 0.6  # 最大转向角[rad]
    BUBBLE_R = np.hypot((LF + LB) / 2.0, W / 2.0)  # 碰撞检测半径

3.2 运动学方程

车辆状态转移方程:

def move(x, y, yaw, distance, steer, L=WB):
    x += distance * cos(yaw)
    y += distance * sin(yaw)
    yaw = pi_2_pi(yaw + distance * tan(steer) / L)
    return x, y, yaw

4. 核心算法实现

4.1 节点扩展

节点扩展是算法的核心部分,主要包括:

  1. 转向角采样

                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值