深度学习模型——经典卷积神经网络(从概念到实现)【下】

参考来源:

动手深度学习(第二版)

前文链接:

https://mp.csdn.net/mp_blog/creation/editor/130668945

一、卷积神经网络(LeNet)介绍

LeNet是深度学习中的一个经典卷积神经网络模型,它由加州大学Yann LeCun教授及其团队在20世纪90年代初期开发出来。主要用于手写数字识别等计算机视觉领域任务。

LeNet最早应用于美国银行自动支票处理系统,通过对输入图像进行卷积运算和池化操作,可以提取出图像的特征,并建立一系列全连接层对这些特征进行分类。

LeNet一般包含以下几个层次:

  1. 输入层:接收原始图像数据

  2. 卷积层:使用一组卷积核对输入图像进行卷积运算,提取出图像的特征。LeNet中使用了两个卷积层(C1和C3),每个卷积层后接一个非线性激活函数层(例如tanh或Sigmoid)。

  3. 池化层:对卷积层的输出进行下采样或降维,减少数据计算量并保留重要的特征信息。LeNet中使用了两个池化层(S2和S4),通过最大值池化(max-pooling)来实现。

  4. 全连接层:对卷积池化得到的特征进行分类。LeNet中使用了三个全连接层(F5、F6和输出层),其中输出层的节点数等于分类数目,使用Softmax函数对各类别得分进行归一化处理。

几个层次可以整合为两个主体:

  • 卷积编码器:由两个卷积层组成;

  • 全连接层密集块:由三个全连接层组成。

模型的示意图如下:

 流程概述:

        原输入图片大小为28×28的像素矩阵,我们首先对原图像进行填充,扩充到32×32的矩阵大小。之后放到一个5×5,具有6通道的卷积层里面。得到一个6通道28×28的特征图放进2×2的池化层中,使得宽高缩小一倍。之后再放入一个16通道5×5的卷积层中,得到最后16通道10×10的特征图,再放入二维池化层中缩小一倍宽高,拉成一个向量送到全连接层,通过三层SoftMAX判断类别概率。

       LeNet模型在20世纪90年代就已经取得了非常出色的手写数字识别效果,在后来被广泛应用于其他计算机视觉领域任务。同时,它也是现代深度学习中卷积神经网络的雏形,为后续的卷积神经网络模型发展奠定了基础。

二、卷积神经网络(LeNet)的优缺点

优点:

  1. 参数共享:LeNet使用了卷积和池化操作将图像数据进行特征提取,其中卷积操作可以对图像中不同位置的信息进行识别,而参数共享使得网络中参数量减少,训练速度更快效率更高。

  2. 局部连接性:LeNet使用了局部连接性的设计,这样每个神经元仅与前一层的局部神经元相连,避免了全连接带来的过拟合问题,并有效地降低了计算复杂度。

  3. 池化操作:LeNet在卷积层之后使用池化操作来进行下采样,通过保留主要的特征信息,减少了参数量和计算量,同时还能够增强模型的鲁棒性。

缺点:

  1. 难以处理大尺寸图像:LeNet适用于小尺寸图像的特征提取,但无法有效处理高分辨率或大尺寸的图像,因为具有较多卷积核和神经元等大量的待训练参数,需要更大规模的计算资源。

  2. 容易过拟合:由于LeNet模型容易受限于固定的网络架构和参数初始化方式,当模型复杂度较高时,训练数据不足会导致过拟合的情况发生。

  3. 依赖于提前手动特征工程:LeNet需要先对原始图像进行处理以提取出相关特征,如果网络架构和输入特征处理不够精确,将极大地影响模型的准确性。而对于复杂的计算机视觉任务,则需要更加智能、自适应的深度学习模型。

三、卷积神经网络(LeNet)代码实现:

首先实例化一个Sequential块并将需要的层连接在一起。需要注意的是,要在卷积层和池化层中加入一层激活函数,用于模型的非线性映射,增加模型的复杂度和表达能力。

import torch
from torch import nn
from d2l import torch as d2l

net = nn.Sequential(
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10))

 模型框架也可以用下图来表示:

                                    

X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)

这里为了方便大家理解,输出了每一层梳理后数组X的形状

这里是将每一小批量数据移动到我们指定的设备(例如GPU)上。同时用正确预测的数量除以总预测的数量来计算精度。

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval()  # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device
    # 正确预测的数量,总预测的数量
    metric = d2l.Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

这里为利用GPU的模型训练方法:

nn.init.xavier_uniform_表示使用Xavier均匀分布方法进行权重初始化操作,其实现方式等价于nn.init.uniform(tensor, a=-sqrt(6)/sqrt(fan_in), b=sqrt(6)/sqrt(fan_in)),其中fan_in表示权重矩阵输入线性单元的数量。

Xavier权重初始化方法旨在使每个神经元的输出方差尽量相等,且避免饱和情况和梯度消失/爆炸现象导致的训练困难。由于PyTorch默认的权重初始化是采用均值为0、方差为1的高斯分布或均匀分布,因此使用Xavier方法进行初始化可以提升模型收敛速度和准确性。

d2l.Timer()是Deep Learning框架中定义的计时器类,用于测量代码运行时间。一般情况下,我们可以使用Python内置模块time来实现代码运行的时间测量,不过d2l.Timer()提供了更加直观、简洁和可读性强的计时接口。

#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型(在第六章定义)"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')

定义超参数来训练模型:

lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

           

                     

 

    

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朝闻夕逝752

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值