神经网络基础

在这里插入图片描述

1.神经网络基础

1.1线性函数

在这里插入图片描述
x为图像,W为权重值,f输出对于该图像的得分值

在这里插入图片描述
以图片(图像以32323=3072为例)分类(10类)为例:
f值(101)就是对一张图像的类别打分值;
W(10
3072)包含对3072个像素点每一点的权重值;
x(30721)图像的列向量;
b(10
1)每一个类别的偏移量(感觉像消除误差的)

在这里插入图片描述
以3类图像,图像为2*2的为例

1.2损失函数

结果的得分值可以指出模型的当前效果,有多好或是多差!
在这里插入图片描述
损失函数Li (越小越好,越大表示分类效果越差)中sj 为该图像在其他类别中的得分值,syi 为该图像在自己类别中的打分;其中+1是为了防止得分比较近的时候,使得误判损失为0(如:第一幅图打分为3.2,3.15,-1.7,则计算cat和car之间的损失时,不加1,输出为0,表示两者无误差,但实际是不对的),也就是让正确类别比错误类别高于1以上才无损失。

在这里插入图片描述
在这里插入图片描述
R(W)为所有权重阵的平方和,λ惩罚系数,越大表示不希望过拟合,削减奇异值,越小表示削减程度小点。

1.3激活函数

在这里插入图片描述
使得得分值的范围归到0-1之间
在这里插入图片描述
第一列为类别的得分值;第二列为exp(得分);第三列为归一化(第二列每个值都除以所有的求和值),最后求-log(越接近0表示损失越小,分类越好)

1.4前向传播

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

1.5反向传播

在这里插入图片描述
链式求导法则
在这里插入图片描述
在这里插入图片描述
图中,绿色表示相应的输入量,红色表示链式求导的逆向输出值(如:1/x的导数为-1/x2 ,x=1.37,输出为下面的-0.53)
在这里插入图片描述
在这里插入图片描述
该图表示:加法的导数都为1,MAX的导数是输入最大的变量导数为整个输出;
乘法导数互换。

1.6整体框架

在这里插入图片描述
在这里插入图片描述

隐藏层:对输入的每个数据都附上权重值(几个圆(神经元)代表有多少种权重)。
每一隐藏层后都进行非线性变化(激活函数,如sigmoid,max)。
在这里插入图片描述
在这里插入图片描述
神经元越多过拟合程度也越大,效果可能越好,但速度越慢
斯坦福大学可视化神经网络训练

在这里插入图片描述
惩罚力度越大过拟合效果越弱。
在这里插入图片描述
隐藏层神经元一般为64,128,256,512。可见神经元数目越多过拟合越大

在这里插入图片描述
在这里插入图片描述
sigmoid函数当自变量过大会出现梯度消失,变为0.

1.7数据预处理

在这里插入图片描述
在这里插入图片描述
形成权重矩阵(D*H的矩阵)
在这里插入图片描述
在每一层中随机选取少量神经元参与计算,以此避免过拟合。
总结:
输入数据经过预处理,*W1——>激活函数…*Wn——>激活函数,输出。
之后计算损失函数,通过反向传播对每一个参数进行求导,以修正参数值。

2.卷积神经网络(CNN)

在这里插入图片描述
输入不再是列向量,而直接是一张图像
在这里插入图片描述

2.1卷积

在这里插入图片描述
三通道图像:每一通道都进行卷积,之后相加。
在这里插入图片描述
有多个卷积核就会输出几层特征图。(图中bias表示w*x+b中的b偏移量)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2池化层

降低特征图的大小,也称压缩或下采样
在这里插入图片描述

在这里插入图片描述
在每个区域选择最大的值,只将特征图中重要的特征提取出来。

在这里插入图片描述
上图为一个七层的卷积神经网络(只有带参数计算的才算一层:6个卷积+1个全连接层FC),在最后的池化和FC之间还有一步将三维的特征块,转化成列/行向量(即下图中转换)。
在这里插入图片描述

2.3感受野

在这里插入图片描述
图中表示:input经过一次卷积,输出为粉色区域,第二次卷积输出为一个粉色格。
在这里插入图片描述
所需参数个数:77C中C表示输入为C层,C*(77C)左侧C表示需要C个卷积核。右同。

2.4Resnet

对于层数越多效果反而不好的,采取Resnet残差网络。
在这里插入图片描述
即,在本来流程中的每一层(经卷积)中都加入一个直接连接到下一层的线路,保证当网络经过训练后,本层中权重参数不适合时,去掉后不影响之后的网络(保证不会比层数少的时候效果差)。
在这里插入图片描述

3.循环(递归)神经网络

在这里插入图片描述
在这里插入图片描述
h表示每个时刻的结果,即当前隐藏状态,作为下一时刻的输入。
在这里插入图片描述

3.1 LSTM

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2自然语言处理(NLP)-词向量模型(Word2Vec)

在这里插入图片描述
即对每一个特征进行打分[-1,1],最后形成向量形式。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.对抗生成网络(GAN)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考资料:神经网络入门到实战

  • 18
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,主要用于图像识别和计算机视觉任务。它的基本概念包括以下几个方面: 1. 卷积层(Convolutional Layer):卷积层是CNN的核心组成部分,通过使用一系列可学习的滤波器(也称为卷积核)对输入图像进行卷积操作,提取图像的特征。每个滤波器会在输入图像上滑动,并计算出对应位置的卷积结果,生成一个特征图。 2. 池化层(Pooling Layer):池化层用于减小特征图的空间尺寸,同时保留重要的特征信息。常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling),它们分别选取局部区域中的最大值或平均值作为池化结果。 3. 激活函数(Activation Function):激活函数引入非线性变换,增加模型的表达能力。在卷积神经网络中,常用的激活函数包括ReLU(Rectified Linear Unit)、Sigmoid和Tanh等。激活函数通常被应用在卷积层之后。 4. 全连接层(Fully Connected Layer):全连接层将前一层的所有神经元与当前层的所有神经元相连接,每个连接都有一个权重。全连接层通常用于将卷积层和池化层提取的特征映射转化为最终的分类结果。 5. Dropout:Dropout是一种正则化技术,用于减少模型的过拟合。在训练过程中,随机将一部分神经元的输出置为0,可以有效地防止网络对某些特定特征过度依赖。 6. 卷积神经网络的训练:CNN的训练通常使用反向传播算法(Backpropagation)进行参数更新。通过将输入数据和对应的标签进行前向传播和反向传播,不断调整网络参数,使得网络能够逐渐学习到更好的特征表示。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值