在当今的人工智能领域,SFT(Supervised Fine - Tuning) 是提升模型性能以适应特定任务的常用手段。然而,不少开发者都遭遇过一个头疼的问题:模型经过SFT后,表现不但没有提升,反而“变傻”了。今天咱们就来深入探讨一下这背后的原因以及行之有效的解决方案。
文章目录
- 一、探寻模型“变傻”的根源
-
- 1. 1 过拟合问题
- 1.2 灾难性遗忘
- 1.3 微调超参数设置不当
- 1.4 任务差异过大
- 二、对症下药,拯救“傻”模型
-
- 2.1 数据处理和扩充
- 2.2 缓解灾难性遗忘
- 2.3 优化微调超参数
- 2.4 逐步微调或多任务学习(应对任务差异大)
一、探寻模型“变傻”的根源
1. 1 过拟合问题
- 数据困境
- 数据量短板:当用于SFT的训练数据少得可怜时,模型就像一个被困在狭小知识空间的探索者,只能过度聚焦于这有限的数据模式。想象一下,若仅用寥寥几篇关于小众科技产品评测的文本微调模型,它就会死死记住这些评测中的独特表述、偏好倾向,一旦面对新的同类型产品评测,稍有不同就不知所措。
- 数据质量“雷区”:错误标签、杂乱噪声堪称模型学习路上的“绊脚石”。要是文本数据里充斥着错别字、语义混乱的句子,还带着错误标注的情感倾向或类别标签,模型就会被带偏,学到一堆错误知识。
- 模型“消化不良”
- 参数与数据失衡:模型参数过多而微调数据稀缺,就好比给一个食量极小的人配备了超大的记忆仓库,它只会一股脑儿记住数据细节,而非提炼通用规律,泛化能力自然大打折扣。