为何SFT之后模型反而变傻了,有什么解决方案?

在当今的人工智能领域,SFT(Supervised Fine - Tuning) 是提升模型性能以适应特定任务的常用手段。然而,不少开发者都遭遇过一个头疼的问题:模型经过SFT后,表现不但没有提升,反而“变傻”了。今天咱们就来深入探讨一下这背后的原因以及行之有效的解决方案。
在这里插入图片描述

文章目录

  • 一、探寻模型“变傻”的根源
    • 1. 1 过拟合问题
    • 1.2 灾难性遗忘
    • 1.3 微调超参数设置不当
    • 1.4 任务差异过大
  • 二、对症下药,拯救“傻”模型
    • 2.1 数据处理和扩充
    • 2.2 缓解灾难性遗忘
    • 2.3 优化微调超参数
    • 2.4 逐步微调或多任务学习(应对任务差异大)

一、探寻模型“变傻”的根源

1. 1 过拟合问题

  1. 数据困境
    • 数据量短板:当用于SFT的训练数据少得可怜时,模型就像一个被困在狭小知识空间的探索者,只能过度聚焦于这有限的数据模式。想象一下,若仅用寥寥几篇关于小众科技产品评测的文本微调模型,它就会死死记住这些评测中的独特表述、偏好倾向,一旦面对新的同类型产品评测,稍有不同就不知所措。
    • 数据质量“雷区”:错误标签、杂乱噪声堪称模型学习路上的“绊脚石”。要是文本数据里充斥着错别字、语义混乱的句子,还带着错误标注的情感倾向或类别标签,模型就会被带偏,学到一堆错误知识。
  2. 模型“消化不良”
    • 参数与数据失衡:模型参数过多而微调数据稀缺,就好比给一个食量极小的人配备了超大的记忆仓库,它只会一股脑儿记住数据细节,而非提炼通用规律,泛化能力自然大打折扣。
    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱睡觉的咋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值