目录
写在前面
滑模控制的核心是李雅普诺夫函数,基本思想是寻找一个滑模面,将被控系统拉取到面上并使其沿着滑模面运动。Lyapunov渐进稳定保证了任意状态点最终均会运动到滑模面上,从而启动滑动模态。设计滑模控制器可以选择对控制器输入进行设计,或对趋近率进行设计。
常见的趋近率有:,分别为等速趋近率、指数趋近率和幂次趋近律。由此算出的的控制信号
大多是含有符号函数项、反复阶跃的信号,对于硬件要求很高,信号高频切换会导致系统状态在所选取的滑模面附近来回振荡,即输出信号出现抖振现象。但滑模控制器的设计原理能够很好消除干扰噪声,使其对扰动的鲁棒性很强。
通过仿真发现,基于这几种常见的趋近率进行控制器的设计时,有两点需要注意:
-
抖振的消除:sgn(s)项的切换速率,即参数
可变(远离滑模面时大,靠近滑模面时小);
-
抗干扰/鲁棒性好:
大(当s很大时(微分放大噪声),控制率u与s和噪声无直接大小关系);
具体内容写在下文。
趋近率
学习基于趋近率 设计滑模控制器时,只说这样可以保证Lyapunov稳定性,于是就想到,如果选择趋近率为
,可以得到
,看上去好像也没什么问题。
通过仿真尝试,选取下面的被控模型:
两种趋近率_无噪声
分别使用等速趋近率 :
使用趋近率 ,可以看到仿真误差更小了,甚至可以很大程度减弱抖振现象:
两种趋近率_有噪声
为了验证其抗干扰性,直接给计算出的偏差加入一个白噪声(功率0.1 采样0.1)。
使用等速趋近率的控制效果如下,从左图跟随结果来看根本不会出现噪声:
但相反,直接使用的控制,出现了明显的噪声:
因此,很明显地感觉到,虽然这种趋近率也可以满足Lyapunov稳定,甚至因为不含符号函数能避免抖振现象,但对于有干扰的系统来说,鲁棒性较差;
指数趋近率
将这两种趋近率结合,就是指数趋近率 ,无噪声时:
,能很好的改善抖振,但在有噪声时鲁棒性并不好。
可以总结为:较大时 鲁棒性好,但抖振;
较小时,不抖振,但鲁棒性差;这样综合并不好。
幂次趋近率
尝试将趋近率改为
当没有噪声加入时,控制效果很好 (甚至更快了) 而且完全没有抖振:
加入噪声之后,与-ks的趋近率相对比,能实现很好的控制效果:
下面对抗干扰、抗抖振两种特性进行分析。
抖振的改善
究其根本,应该是指数的特性,对于:这里选取幂为0.5,就相当于
对于s在小范围(|s|<1)的抖振情况,总有产生一个大于s的系数,当s较大时,趋近率的绝对值也会变大,加速趋近滑模面;如果直接去观察趋近率 的值,并与-10sgn(s)以及几种经典的能改善抖振的控制率进行比较:
对照选取不同参数的图像,还可以探究趋近率中参数的选择问题。可以看到如果s的指数 越小,越接近于符号函数(抗扰);而如果
越大(指≈1),越接近于-10s(抗抖振):
从实际仿真图像可以看出的确如此,左图有干扰下当 越小越好;右图无干扰下当
越大越好
至于 仍然是选择一个比扰动峰值更大的数即可,这点在选取指数趋近率时的具体解释是:
在有干扰d时,因为在求u时并没有考虑到d,实际算出的 ,对于 Lyapunov 函数:
,如果设计
,则能保证 Lyapunov 稳定恒成立;
鲁棒性的判断
可以分别对指数趋近率、鲁棒性不好不抗干扰的趋近率 二者的
进行仿真,输入从-3到3的s输入,观察输出:
两种方法得到的实际 可以明显看出,左边的方式能将其控制在一个合适的度内,不至于当s增大时
变得很负。
抗干扰的本质其实在于,滑模控制使用的切换函数,事控制率u与滑模切换面s并没有直接的大小关系,当有干扰时,虽然s中含有了很大的噪声分量(来自于e与 ),但是u的处理方法使s中的噪声的大小并没有表现出来;
下图是三种不同的趋近率下的s与u:(左到右分别为等速趋近、幂次趋近、,坐标轴已统一数量级),上图为s,下图为u:
可以看出s几乎一致,在微分作用下将噪声放大了很多倍表现出来;而u相差很大。
符号项的系数越大,对噪声扰动的鲁棒性就越强。