【滑模控制】减弱抖振或噪声 趋近率的选择

目录

写在前面

趋近率

两种趋近率_无噪声

两种趋近率_有噪声

指数趋近率

幂次趋近率

抖振的改善

鲁棒性的判断


写在前面

滑模控制的核心是李雅普诺夫函数,基本思想是寻找一个滑模面,将被控系统拉取到面上并使其沿着滑模面运动。Lyapunov渐进稳定保证了任意状态点最终均会运动到滑模面上,从而启动滑动模态。设计滑模控制器可以选择对控制器输入进行设计,或对趋近率进行设计。

常见的趋近率有:\dot{s}=-\epsilon sgn(s),\dot{s}=-\epsilon sgn(s)-ks,\dot{s}=-\epsilon |s|^{\alpha}sgn(s),分别为等速趋近率、指数趋近率和幂次趋近律。由此算出的的控制信号u大多是含有符号函数项、反复阶跃的信号,对于硬件要求很高,信号高频切换会导致系统状态在所选取的滑模面附近来回振荡,即输出信号出现抖振现象。但滑模控制器的设计原理能够很好消除干扰噪声,使其对扰动的鲁棒性很强。

通过仿真发现,基于这几种常见的趋近率进行控制器的设计时,有两点需要注意:

  1. 抖振的消除:sgn(s)项的切换速率,即参数\epsilon可变(远离滑模面时大,靠近滑模面时小);

  2. 抗干扰/鲁棒性好:\epsilon大(当s很大时(微分放大噪声),控制率u与s和噪声无直接大小关系);

 具体内容写在下文。


趋近率

学习基于趋近率 \dot{s} 设计滑模控制器时,只说这样可以保证Lyapunov稳定性,于是就想到,如果选择趋近率为 \dot{s}=-ks,可以得到 \dot{V}=\dot{s}s=-ks^2\leqslant 0 ,看上去好像也没什么问题。

通过仿真尝试,选取下面的被控模型:

\left \{ \begin{aligned} \dot{x_1}=x_2 \\ \dot{x_2}=10x_2+120u\\ \end{aligned} \right .

两种趋近率_无噪声

分别使用等速趋近率 \dot{s}=-\epsilon sgn(s), ( \epsilon=80,c=20)

使用趋近率 \dot{s}=-s,可以看到仿真误差更小了,甚至可以很大程度减弱抖振现象:

两种趋近率_有噪声

为了验证其抗干扰性,直接给计算出的偏差加入一个白噪声(功率0.1 采样0.1)。

使用等速趋近率的控制效果如下,从左图跟随结果来看根本不会出现噪声:

但相反,直接使用\dot{s}=-\epsilon s的控制,出现了明显的噪声:

 因此,很明显地感觉到,虽然这种趋近率也可以满足Lyapunov稳定,甚至因为不含符号函数能避免抖振现象,但对于有干扰的系统来说,鲁棒性较差;

指数趋近率

将这两种趋近率结合,就是指数趋近率 \dot{s}=-\epsilon sgn(s)-ks,(\epsilon=k=10),无噪声时:

 \dot{s}=-\epsilon sgn(s)-ks,(\epsilon=1,k=10),能很好的改善抖振,但在有噪声时鲁棒性并不好。

 可以总结为:\epsilon较大时 鲁棒性好,但抖振;\epsilon较小时,不抖振,但鲁棒性差;这样综合并不好。

幂次趋近率

尝试将趋近率改为 \dot{s}=-\epsilon_1 |s|^{\epsilon_2}sgn(s),(\epsilon_1=10,\epsilon_2=0.5)

当没有噪声加入时,控制效果很好 (甚至更快了) 而且完全没有抖振:

 加入噪声之后,与-ks的趋近率相对比,能实现很好的控制效果:

 下面对抗干扰、抗抖振两种特性进行分析。

抖振的改善

究其根本,应该是指数的特性,对于|s|^{\epsilon_2}:这里选取幂为0.5,就相当于\sqrt{|s|}

对于s在小范围(|s|<1)的抖振情况,总有产生一个大于s的系数,当s较大时,趋近率的绝对值也会变大,加速趋近滑模面;如果直接去观察趋近率 -10|s|^{0.5}sgn(s) 的值,并与-10sgn(s)以及几种经典的能改善抖振的控制率进行比较:

 对照选取不同参数的图像,还可以探究趋近率中参数的选择问题。可以看到如果s的指数 \epsilon_2 越小,越接近于符号函数(抗扰);而如果 \epsilon_2 越大(指≈1),越接近于-10s(抗抖振):

从实际仿真图像可以看出的确如此,左图有干扰下当 \epsilon_2 越小越好;右图无干扰下当 \epsilon_2 越大越好

至于 \epsilon_1 仍然是选择一个比扰动峰值更大的数即可,这点在选取指数趋近率时的具体解释是:

在有干扰d时,因为在求u时并没有考虑到d,实际算出的 \dot{s}=-\epsilon sgn(s)+d ,对于 Lyapunov 函数:\dot{V}=-\epsilon|s|+ds,如果设计 \epsilon>|d|,则能保证 Lyapunov 稳定恒成立;

鲁棒性的判断

可以分别对指数趋近率、鲁棒性不好不抗干扰的趋近率 \dot{s}=-Ks=-10s,\dot{V}=-Ks^2+ds二者的 \dot{V} 进行仿真,输入从-3到3的s输入,观察输出:

两种方法得到的实际  \dot{V} 可以明显看出,左边的方式能将其控制在一个合适的度内,不至于当s增大时 \dot{V} 变得很负。

抗干扰的本质其实在于,滑模控制使用的切换函数,事控制率u与滑模切换面s并没有直接的大小关系,当有干扰时,虽然s中含有了很大的噪声分量(来自于e与 \dot{e} ),但是u的处理方法使s中的噪声的大小并没有表现出来;

下图是三种不同的趋近率下的s与u:(左到右分别为等速趋近、幂次趋近、-\epsilon s,坐标轴已统一数量级),上图为s,下图为u:

 可以看出s几乎一致,在微分作用下将噪声放大了很多倍表现出来;而u相差很大。

符号项的系数越大,对噪声扰动的鲁棒性就越强。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值