DCdetector

DCdetector: Dual Attention Contrastive Representation Learning for Time Series Anomaly Detection

作者:Yiyuan Yang, Chaoli Zhang, Tian Zhou

发表年份:KDD 2023

1. Introduction and Conclusion

这篇文章的归纳偏置和Anomaly Transformer相似。

异常点和整个序列关联少(少见),和临近的点关联相对多;而正常点可能共享一些潜在的模式,与其他点的关联相对强。

Anomaly Transformer通过可学习高斯核和注意力权重分布的关联差异(差异小,注意力集中在局部,更可能是异常)来检测异常。对比于Anomaly Transformer,这篇文章通过对比学习的方法实现了类似的目标。

1.1 Problems

  1. 常见的异常检测的挑战,a. It takes work to get tables. b. 需要考虑时间依赖,多维度间依赖和非统计特征。c. 异常少见
  1. 基于重构的方法,在不受异常阻碍的情况下学习正常数据的良好重构模型具有挑战性。换言之,学习一个干净的,可以很好重构正常点的模型很困难

1.2 Contributions

  1. 提出了基于双重注意力的对比学习结构(dual-branch attention)【通道独立,多尺度】
  1. 训练只需要对比,而不需要重构误差(和Anomaly Transformer比较)

2. Method

2.1 通道独立->patching


 

2.2 patch-wise attentionpatch-in attention。(+上采样+多尺度)

2.2.1

patch-wise,patch和patch之间(在P上embed,P x N x d -> N x d);patch-in,patch内部(P x N x d -> P x d)。见上示意图。对于某个时刻的点来说,patch-wise就是去计算它与其他几个patch相同位置的attention,patch-in就是计算同一个patch内它与其他点的attention。

Wq和Wk参数共享权重。

2.2.2 上采样

2.2.3 多尺度是指patch的大小不同,最后每个不同patch size的相加。

可以将这两种表示视为排列的多视图表示。(e.g. aabbcc -> abcabc)

归纳偏置:正常点可以在排列下保持其表示,而异常点则不能。从这种对比学习中学习一种排列不变的表示。

2.3 损失函数(KL散度)

3. Experiments

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值