拉普拉斯变换学习笔记

  • 定义:

一个定义在区间  \left [ 0,\infty\right )  的函数,

它的拉普拉斯变换式 F(s) 定义为   F(s) = \int_{0-}^{\infty }f(t)e^{-st}dt 

 F(s)称为 f(t) 的象函数,f(t) 称为F(s)的原函数。

通常用\L[ ]表示对方括号里的时域函数作拉氏变换,记作F(s) = \L [f(t)]

  • 例题:

1.

   \L [u(t)] = \int_{0}^{+\infty }u(t)e^{-st}dt = -\frac{1}{s}e^{-st}|_{0}^{+\infty }\textrm{} = -\frac{1}{s}(0-1) = \frac{1}{s}                                              注:\L [1] = \frac{1}{s}      、   \L [sgnt] = \frac{1}{s}

2.

 \L [e^{kt}] = \int_{0}^{+\infty }e^{-st+kt}dt = \frac{1}{s-k}

3.

\L[coskt] =\int_{0}^{+\infty }coskte^{-st}dt=-\frac{1}{s}\int_{0}^{+\infty }cosktde^{-st}=-\frac{1}{s}(coskte^{-st}|_{0}^{+\infty }-\int_{0}^{+\infty }e^{-st}dcoskt=-\frac{1}{s}(-1+k\int_{0 }^{+\infty } sinkte^{-st}dt)

通过分布积分法  \int_{0}^{+\infty }sinkte^{-st}dt=-\frac{1}{s}\int_{0}^{+\infty }sinktde^{-st}=-\frac{1}{s}(sinkte^{-st}|_{0}^{+\infty }-\int_{0}^{+\infty }e^{-st}dsinkt)=\frac{k}{s}\int_{0}^{+\infty }e^{-st}cosktdt=-\frac{k}{s^{2}}\int_{0}^{+\infty }cosktde^{-st}=-\frac{k}{s^{2}}(-1+k\int_{0}^{+\infty }e^{-st}sinktdt) 

得到: \int_{0}^{+\infty }sinkte^{-st}dt=\frac{k}{s^{2}+k^{2}}

所以原式 =  \frac{s}{s^{2}+k^{2}}

4.

\L [t^{m}]       m\subset Z^{+}

原式=

\int_{0}^{+\infty }t^{m}e^{-st}dt=-\frac{1}{s}\int_{0}^{+\infty }t^{m}de^{-st}=-\frac{1}{s}(t^{m}e^{-st}|_{0}^{+\infty }-\int_{0}^{+\infty }e^{-st}dt^{m})=\frac{m}{s}\int_{0}^{+\infty }t^{m-1}e^{-st}dt=\frac{s}{m}\L [t^{m-1}]=\frac{s}{m}\frac{m-1}{s}\L [t^{m-2}]=...=\frac{m!}{s^{m}}\L [1]=\frac{m!}{s^{m}}\frac{1}{s}=\frac{m!}{s^{m+1}}

5. 

 

有助于拉普拉斯变换理解的文章: 从另一个角度看拉普拉斯变换 - 知乎 (zhihu.com)

  • 卷积与拉普拉斯变换

\L[x(t)*g(t)] = \L [X(t)]\L [G(t)] = X(s)G(s)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值