【机械设备故障诊断】一种用于变速条件下铁路车轮踏面擦伤检测的两级自适应调频模态分解方法(Matlab代码实现)

     💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文献


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

本文通过一个后处理步骤来解决宽带脉冲信号分解算法中的过分解问题,能够与任意信号分解方法相结合。该方法在检测脉冲信号成分方面展现出显著优势,尤其适用于机械设备故障诊断领域。

本文复现论文《Chen S, Wang K, Chang C, et al. A two-level adaptive chirp mode decomposition method for the railway wheel flat detection under variable-speed conditions, Journal of Sound and Vibration, 2021》中的一些研究成果。还查考另外两篇论文:《Chen S, Dong X, Peng Z, et al, Nonlinear Chirp Mode Decomposition: A Variational Method, IEEE Transactions on Signal Processing, 2017》以及《Chen S, Yang Y, Peng Z, et al, Detection of Rub-Impact Fault for Rotor-Stator Systems: A Novel Method Based on Adaptive Chirp Mode Decomposition, Journal of Sound and Vibration, 2019》,这些论文为本文的应用和技术改进提供了重要基础。

摘要 车轮踏面擦伤作为一种常见的铁路车辆缺陷,会对车辆及线路基础设施造成较大的冲击力,严重影响车辆运行的稳定性和安全性。鉴于复杂的轨道不平顺情况及列车变速行驶条件,车辆振动响应中常包含强烈的干扰信号分量,且频率内容随时间变化,这对车轮擦伤的检测构成了严峻挑战。本文首先利用考虑变速条件下车轮擦伤的车辆-轨道耦合模型,计算并分析车辆的振动加速度。随后,依据振动特征,发展了一种两级自适应调频模态分解(ACMD)方法应用于车轮擦伤检测。具体而言,在方法的第一级中,ACMD与基于基尼指数的模态选择与重组策略结合,旨在强干扰环境下分离不同的故障信号模态。基于分离出的信号模态,第二级采用高分辨率的ACMD基时间-频率分析方法,精确提取时变的故障特征频率,从而实现故障的精准识别。动力学仿真及实验结果均表明,所提方法能够有效检测变速运行状态下车辆小尺寸车轮擦伤,即便在存在强烈干扰的情况下亦能保持较高检测准确性。 

铁路车辆轮对的健康状况直接影响到车辆的运行稳定性和安全性[1]。在异常制动过程或不利环境(如雨雪天气)导致轮轨黏着系数降低时,车轮容易发生抱死和滑行[2]。车轮滑行会在车轮踏面表面产生严重的磨损或磨平现象(即所谓的车轮“踏面擦伤”)。作为铁路车轮最常见的局部缺陷之一,车轮踏面擦伤会引起大的冲击力和噪音,影响乘客舒适度,导致车辆和基础设施部件性能下降,甚至引发脱轨事故[3]。随着车辆轴重和速度的增加,车轮踏面擦伤的危害日益凸显,因此在现代轨道交通行业中,车轮擦伤的状况监测和故障检测变得越来越重要。

过去几十年中,基于不同测量技术和不同类型测量数据,开发了多种车轮踏面擦伤检测方法。例如,许多研究者利用安装在轨道上的应变传感器(如应变片或光纤布拉格光栅[3,4])来检测和识别因车轮擦伤引起的轮轨撞击。此外,贝叶斯预测[5]和机器学习[6]方法也可应用于应变数据,以提高故障检测的准确性。另有报道指出,超声技术可用于检测乃至量化车轮踏面擦伤[7]。除了上述方法外,特别引起我们兴趣的是基于车辆部件振动信号的车载车轮踏面擦伤检测方法。基于振动信号的故障检测方法因其对早期故障敏感且易于测量而受到广泛关注。Bernal等人[8]基于振动加速度信号研究了车轮踏面擦伤的可检测性,结果显示在噪声环境下,轮对(或轴箱)和转向架构架的振动信号适用于故障检测。Bosso等人[9]则开发了一种基于轴箱振动加速度时域统计指标的车载车轮踏面擦伤故障诊断算法。然而,铁路车辆常遭受复杂的轮轨激励(如轨道不平顺),车轮踏面擦伤(尤其是初期故障)的故障信号特征可能会被强干扰分量淹没,使得故障检测变得非常困难。

为了在干扰条件下检测车轮踏面擦伤,可以采用先进的滤波和信号分解方法来增强和提取故障信号。Li等人[10]提出了自适应多尺度形态滤波器,以增强在强噪声下因车轮踏面擦伤引起的脉冲信号特征。他们还采用了经验模态分解(EMD)来提取故障脉冲信号分量,并计算得到分量的包络谱以检测车轮踏面擦伤的故障特征频率[11]。然而,EMD固有的局限性,如模式混叠、端部效应、对噪声的抗扰性差等,可能导致在复杂激励下无法正确提取所需故障信号。许多EMD的改进版本,如集合经验模态分解[12]和最近基于时变滤波器的EMD(TVF-EMD)[13]已经被开发出来,但这些方法只在特定方面解决了问题。作为EMD的替代品,更高级的方法如经验小波变换[14]和变分模态分解(VMD)[15]已经被构建,其中一些已经在铁路车辆部件故障诊断中显示出潜力[16,17,18,19]。值得注意的是,稀疏表示也是故障诊断中信号分解的知名方法。例如,Qin构建了一组基于模型的冲击小波,并提出了使用该小波字典进行故障特征提取的稀疏表示算法[20]。他还提出了一种新的1维快速K-SVD算法,该算法具有自适应瞬态字典,用于瞬态特征提取[21]。然而,这些方法大多基于窄带条件开发,对于宽带信号(如车轮踏面擦伤产生的瞬态脉冲)可能会遇到过分解问题。此外,当车辆经历牵引或制动等变速过程时,包络谱不能很好地表征车轮踏面擦伤的时变特征频率。

时频(TF)分析是提取时变信号特征的有效工具。不同类型的TF技术,如基于小波的方法、短时傅里叶变换(STFT)和Wigner-Ville分布,已被用于分析或检测车轮踏面擦伤[22,23,24,25]。然而,这些传统方法生成的TF表示(TFR)因能量集中度差和交叉项等问题而著称,无法准确揭示时变信号的TF模式[26]。Yang等人[27]应用了一种称为TF重分配的后处理技术,以提高由车轮踏面擦伤在变速条件下引起的车辆振动响应的TFR的可读性。这项工作仅关注于振动特性分析,没有考虑到在干扰条件下进行故障检测。作为重分配技术的一个特例,同步压缩变换(SST)因其与EMD类似的模式提取能力而引起了越来越多的兴趣[28,29]。SST的许多扩展,如多SST[30]、匹配SST[31]和高阶SST[32]已经开发出来,并成功应用于机械故障诊断[33]。然而,已知基于SST的方法在处理强时变信号方面能力较弱,且不能妥善解析紧邻的信号模式。最近,作者基于自适应调频模态分解(ACMD)构建了几种强大的TF方法,能够为模式非常接近甚至重叠的快速变化信号生成高分辨率的TFR[34,35,36]。虽然基于ACMD的方法已在多个领域得到应用[37,38,39,40],但在车轮踏面擦伤检测中的应用尚未见报道。考虑到来自轨道不平顺的复杂干扰,ACMD的适应性和针对性应显著增强以应用于车轮踏面擦伤检测。

总之,变速条件下的车轮踏面擦伤检测是一项具有挑战性的任务,在文献中鲜有报道。难点包括:1)可能淹没故障信号特征的强烈干扰;2)难以准确识别的时变特征频率。本研究基于车辆-轨道耦合动力学模型,分析了车轮踏面擦伤在变速条件下的车辆振动特性,特别是频率演变规律。然后,根据振动特性,提出了一种有针对性的两级ACMD方法来解决车轮踏面擦伤检测中上述两个挑战性问题。该方法的贡献包括:1)ACMD与基于基尼指数(GI)的模式重组方案相结合,以便在严重干扰下分离不同的信号模式(如故障脉冲、谐波等)(第一级);2)对分离出的信号模式应用基于ACMD的TF方法,以准确提取时变特征频率,从而检测车轮踏面擦伤及其他如钢轨波浪磨耗等缺陷(第二级)。

📚2 运行结果

部分代码:

%% ACMD 
alpha0 = 1e-3; % smoothness parameter for the extracted signal modes
tol = 1e-8; % tolerance level parameter for the inner loop iteration of ACMD
re = 0.01; % terminal threshold; when the residual energy is less than 1% of the energy of the raw signal, stop the algorithm
compset = iter_ACMD1(Sig,SampFreq,alpha0,tol,re); % signal decomposition

[num,~] = size(compset); % the number of the signal modes
gnsettemp = zeros(1,num);    % 
for ii = 1:num
    gnsettemp(ii) = GN_SE(compset(ii,:));  % calculate the Gini index of the signal modes
end


% obtain 13 signal modes; plot the first 8 signal modes
figure
subplot(4,2,1)
set(gcf,'Position',[20 100 1300 650]);        
set(gcf,'Color','w'); 
plot(t,compset(1,:),'linewidth',2);
ylabel('M1','FontSize',20,'FontName','Times New Roman');
set(gca,'FontSize',20)
set(gca,'linewidth',2);

subplot(4,2,2)        
set(gcf,'Color','w'); 
plot(t,compset(2,:),'linewidth',2);
ylabel('M2','FontSize',20,'FontName','Times New Roman');
set(gca,'FontSize',20)
set(gca,'linewidth',2);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文献

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值