💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
三维路径跟踪算法:三维LOS制导+PID艏向+PID纵倾跟踪控制研究
💥1 概述
三维路径跟踪算法:三维LOS制导+PID艏向+PID纵倾跟踪控制研究
一、三维LOS制导算法的基本原理与改进
-
基本原理
三维LOS(Line of Sight)制导是一种基于视线几何关系的导航方法,通过计算载体(如船舶、无人机)与目标点之间的航向角和仰角,生成期望的路径跟踪指令。其核心公式为:
改进策略
-
自适应看前距离:根据路径曲率和载体速度动态调整 ΔΔ,例如在路径拐点处减小 ΔΔ 以提高跟踪精度。
-
三维扩展:将传统二维LOS扩展到三维,通过引入仰角控制垂向运动(如潜水器的深度跟踪),结合航向角和仰角实现三维路径跟踪
二、PID艏向与纵倾控制的实现方式
-
PID艏向控制
- 传统PID的局限性:依赖固定数学模型,对海况变化(如风浪、载重波动)敏感,易出现积分饱和和超调。
- 改进方案:
- 模糊PID:利用模糊逻辑动态调整PID参数(Kp,Ki,KdKp,Ki,Kd),根据航向偏差及变化率实时优化控制输出。
- 滑模PID:结合滑模变结构控制与PID,增强鲁棒性。例如,RBF神经网络用于在线估计外部干扰,减少对模型的依赖。
- 分数阶PID(FOPID) :通过非整数阶微分积分提高对非线性系统的适应性,经粒子群优化(PSO)参数后响应速度提升20%。
-
PID纵倾控制
-
数学模型:以纵倾角偏差 eθeθ 为输入,控制舵机或推进器力矩:
-
- 参数整定方法:
- 智能优化算法:如遗传算法(GA)和粒子群算法(PSO),通过最小化跟踪误差的积分指标(ITAE)实现参数自适应。
- Ziegler-Nichols法:基于临界比例增益 KuKu 和振荡周期 TuTu,适用于一阶惯性系统。
- 参数整定方法:
- 智能优化算法:如遗传算法(GA)和粒子群算法(PSO),通过最小化跟踪误差的积分指标(ITAE)实现参数自适应。
- Ziegler-Nichols法:基于临界比例增益 KuKu 和振荡周期 TuTu,适用于一阶惯性系统。
三、三维LOS制导与PID控制的协同策略
-
分层控制架构
- 制导层:三维LOS生成期望航向角 ψdesψdes 和仰角 θdesθdes,并将其作为PID控制器的输入。
- 控制层:双PID控制器分别驱动舵机和推进器,跟踪制导层输出的角度指令。例如,艏向PID控制舵角,纵倾PID调节推进器推力。
-
抗干扰设计
- 前馈补偿:在PID控制律中加入海流速度估计值,抵消稳态位置偏差。
- 解耦控制:通过状态反馈分离航向与纵倾的动力学耦合,避免舵机动作对纵倾的干扰。
-
协同优化案例
- 无人艇路径跟踪:LOS制导结合模糊PID,横向跟踪误差降低40%,且在4m/s风速下仍保持航向稳定性。
- 水下机器人(AUV) :3D LOS与自适应S面控制结合,直线路径跟踪速度提升15%,抗流干扰能力增强。
四、三维LOS与PID纵倾控制的耦合效应分析
-
耦合来源
- 动力学耦合:航向角变化引起侧滑,导致纵倾角波动;反之,纵倾调整可能影响航向稳定性。
- 环境干扰耦合:海流在水平与垂直方向的分量同时影响航向和深度跟踪精度。
-
解耦策略
- 动态看前距离调整:根据路径曲率和载体速度实时优化 ΔΔ,减少航向-纵倾耦合引发的振荡。
- 多变量PID:设计MIMO(多输入多输出)PID控制器,通过耦合矩阵补偿交互效应。
- 强化学习辅助:采用深度确定性策略梯度(DDPG)动态调整PID参数,抑制耦合干扰。
五、多PID控制器的协调机制
-
优先级分配
- 航向优先:在紧急避障场景下,航向PID输出权重高于纵倾PID,确保快速转向。
- 能量优化:根据推进效率动态分配控制量,例如在低速时降低纵倾控制频率以节省能耗。
-
参数协同优化
- 联合目标函数:以路径跟踪误差和能量消耗为指标,通过PSO同步优化双PID参数。
- 模糊协调器:根据偏差大小切换控制模式,例如大角度偏差时采用高增益PID,小偏差时切换为模糊PID平滑响应。
-
仿真与实验验证
- Matlab/Simulink平台:构建包含LOS制导、双PID控制器和六自由度动力学模型的仿真系统,对比传统PID与改进算法的跟踪误差(图1)。
- 实船测试:某型AUV在3级海况下,改进算法路径跟踪误差小于1.5米,较传统方法提升50%。
六、研究趋势与挑战
-
智能化扩展
- 深度强化学习:将TD3算法与LOS-PID结合,通过环境交互自主优化控制策略,减少人工调参依赖。
- 数字孪生技术:基于实时数据更新控制器参数,适应动态环境变化。
-
挑战
- 复杂干扰建模:浪涌、漩涡等瞬态干扰的在线辨识与补偿仍需突破。
- 多目标优化:平衡跟踪精度、能耗与硬件寿命的Pareto最优解尚未完全解决.
📚2 运行结果
仿真平台:Matlab2020b/Simulink
部分代码:
figure
plot3(Y,X,Z,'-b',WaypointsPlot(:,2),WaypointsPlot(:,1),WaypointsPlot(:,3),'--r','LineWidth',1.5);
hold on;grid on;
scatter3(Y(1),X(1),Z(1),40,'p','filled','MarkerFaceColor','red');
scatter3(Y(end),X(end),Z(end),40,'h','filled','MarkerFaceColor','black');
scatter3(WaypointsPlot(:,2),WaypointsPlot(:,1),WaypointsPlot(:,3),40,'o','MarkerEdgeColor','red');
%axis equal;
%zlim([0 0.6]);
set(gca,'DataAspectRatio' ,[1 1 0.06]);
legend({'Track','Task Path','Start','End','WPs'},'Location','best');legend('boxoff');
xlabel('X[m]');ylabel('Y[m]');zlabel('Depth[m]');
set(gca,'ZDir','reverse');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(内容仅供参考,具体以运行结果为准。)
[1]Chuan Liu, Xianbo Xiang, Lichun Yang, Jinjiang Li, Shaolong Yang,
A hierarchical disturbance rejection depth tracking control of underactuated AUV with experimental verification,Ocean Engineering,Volume 264,2022,112458,ISSN 0029-8018,
[2]庹冠军.无人水下航行器多模型切换控制方法研究[D].哈尔滨工程大学[2024-04-09].DOI:CNKI:CDMD:2.1018.048014.