无人艇路径规划、避碰、路径跟踪控制(vrep仿真,含ros通信,rrt*,COLREGS,los,pid差速控制)

2021/05/26 增加rrt*-smart局部路径规划(动态避障,遵守COLREGS避碰规则)

关键词:rrt*-smart,dcpa,tcpa,COLREGS,船舶安全领域

这里先展示结果,具体实现方法等我写完论文再发。(图中绿色线条是rrt*-smart随机树,蓝色线条是障碍船的行驶轨迹,红线是无人艇规划路径。)

rrt*-smart 规划结果1
rrt*-smart 规划结果2
路径模拟行驶

实际行驶路径(实线为已经走过的路径,虚线为规划路径)
同上

最后赠送几张海边的美景

2020/12/7   实艇控制总体框架(代码就不传啦)

1、gps和激光雷达的数据接收、解析、处理、发布话题

2、 坐标系转换:LLA转ECEF,ECEF转ENU

3、根据LOS及障碍物位置计算目标航向

4、PID差速转向控制  及  原地转向

2020\11\16 更新:vrep仿真,ros\gps\imu\lidar

仿真环境:vrep最新版本(CoppeliaSim)、ros-kinetic、Ubuntu16.04、Python 2.7,仿真时记得先打开ros,再打开vrep,这样会自动加载vrep_ros interface插件。

两推进器船、有波浪的水面(改编自github某不知名环境)

跟踪结果:

(黑色为航向,init_vel 、max 、min 为pid中的基准推力、限幅推力,不是真实的速度,真实的船速从vrep传感器获得)

参数:P=10,I=1.2,init_vel=5.0,len_usv=1.25,line_length=50.0,N=4,min_speed=-10.0,max_speed=10.0  稳定状态速度约1m/s

高速状态较好参数
参数:init_vel=40.0_max=80.0_min=-80.0_P=15.0_I=3.0

快捷获取物体信息的方式(vrep中的lua脚本):

--初始化一个multiarray的话题  
pub_lv=simROS.advertise('/info','std_msgs/Float32MultiArray')
simROS.publisherTreatUInt8ArrayAsString(pub_lv)

--获取信息
 pos1=sim.getObjectPosition(Boat,-1)  
--xyz坐标
 l_v1,a_v=sim.getObjectVelocity(Boat)
--线速度,角速度
angle1=sim.getObjectOrientation(Boat,-1)[3]
--方位角 (-pi到pi)

--将信息打包成一维数组,lua下标从1开始
data_all={}
data_all[1]=angle1
data_all[2]=pos1[1]
data_all[3]=pos1[2]
...

--发布话题
simROS.publish(pub_lv, {data=data_all})

控制量:两推进器的力的大小,基于差速模型的pid控制

坐标系:

1、仿真环境中有一个世界坐标系,所有位置信息都是基于这个世界坐标系的。gps发送的位置是在环境中的(x,y,z)。

2、船的航向角,从x轴正方向逆时针为正顺时针为负,范围为(-pi,pi)。

ROS信息传输:

1、先打开ros再打开vrep,自动加载ros插件后,执行命令 rosnode list会发现有一个 sim_ros_interface的节点,这样我们在vrep环境中发送的消息都是基于这个节点。

发布话题有imu、角速度、线速度、gps(x,y,z)、激光雷达点云;订阅话题:左右电机的推力

2、在vrep界面中,双击每个名字后面的小文档(child_script),会出现该物体的lua执行代码。vrep端发送的话题主要有 gps_data,imu_data 等,主要在Boat、GPS 这三个物体的文档里。

3、在vrep中使用ros,参考了vrep自带的ros例程。发布话题:初始化话题(simRos.advertise),发布话题信息(simros.publish),shutdown。订阅话题: 初始化话题(simRos.subscribe),回调函数(自定义call_back)

usv_ros.py 代码解析:

1、初始化ros话题、目标位置、pid参数等

2、订阅话题的回调函数

将四元数转化为欧拉角:

3、计算无人艇当前航向与目标航向的角度差。

向量夹角的计算

4、pid差速,基础速度base_vel

5、发送话题:左右电机推力 

5、主程序中需要初始化ros节点和vrep 连接id

vrep model 下载链接:my_boat_1221.ttt-机器学习文档类资源-CSDN下载

注意:使用激光雷达的话,将链接https://github.com/edward0im/V-Rep-Autonomous-Vehicle-Simulator里的so文件放到vrep文件夹下。

2020\10\20 

1、找到几个不错的仿真环境,但搭建过程可能会比较费时:

基于java:https://github.com/He-Ze/Autonomous-Surface-Vehicle-Simulator

基于gazebo,试了两天各种报错不能运行:https://github.com/disaster-robotics-proalertas/usv_sim_lsa 

一个无人艇比赛的官方仿真环境,基于gazebo ubuntu18.04 https://github.com/osrf/vrx

这个可运行,但是模型写的不对,船跑不了!!!https://github.com/OUXT-Polaris/ros_ship_packages

2、卡尔曼滤波

协方差矩阵kalman滤波理解三:协方差矩阵的计算_JK-CSDN博客_误差协方差矩阵   卡尔曼滤波中的噪声协方差矩阵(R和Q)应该怎么取值,和噪声分布之间的关系是什么? - 知乎

公式推导:卡尔曼滤波算法详细推导_victor_zy的博客-CSDN博客_卡尔曼滤波推导

RRT*-Smart是在RRT*的基础上进行改进的路径规划算法。它通过优化路径来提高规划结果的质量。RRTRRT*探索出的路径往往是曲曲折折有些小波浪的,但实际上在空地中的最佳路径一般是直线。因此,RRT*-Smart在找到一条可行的路径后,开始考虑优化路径,将曲线化为直线。这个过程是从叶子节点开始,不断寻找能否无障碍地直接连接到先辈节点。通过将路径化为直线,可以减少曲线段的数量,从而提高路径的直线程度。在优化过程中,可以找到一些锚点,它们位于障碍物附近,但无法直接优化路径RRT*-Smart算法的实现可以参考给出的代码\[2\]。 #### 引用[.reference_title] - *1* [无人艇路径规划路径跟踪控制(vrep仿真ros通信rrt*,COLREGSlospid差速控制)](https://blog.csdn.net/weixin_40820983/article/details/109176031)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [RRT*-Smart 路径规划matlab实现](https://blog.csdn.net/howard789/article/details/123056180)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 50
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值