💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于Copula理论的多风电场风电预测误差时空相关性建模研究
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
随着生态环境的逐渐恶化,可再生能源特别是风能的开发利用在全球范围内受到广泛关注,并继续保持快速发展的水平[1]、[2]。然而,由于风力发电固有的随机性和波动性,风电场的大规模并网必然会给电力系统带来电压波动、闪变等负面影响[3]、[4]。此外,存在同一风电基地内的多个风电场的风电预测误差具有很强的时空相关性的情况,正确拟合预测误差并准确建模多个风电场之间的时空相关性对于保证安全、电力系统稳定经济运行调度。
多个地理位置相近的风电场的预测误差具有时空依赖性,这种相关性对电力系统的运行具有显着影响。为此,本文提出了一种基于Copula理论的多风电场风电预测误差时空相关性建模方法。首先,通过比较不同拟合方法的拟合精度,选择拟合精度最高的基于KDE的方法来拟合预测误差的边际分布。然后,提出一种利用Copula函数对短期风电预测误差进行高维建模的方法,得到多个风电场预测误差的联合累积分布函数(JCDF)。最后,利用四个风电场的实际预测误差数据对模型进行了验证。与实际依赖结构相比,基于Copula函数的方法可以有效地建模时空相关性,检测风电预测误差的独立性。仿真结果证明了所提方法的有效性。
2 数学模型
Copula 函数提供了一种为不同的自变量构建联合分布的方法。联合分布包括随机变量的相关性,可以捕捉它们之间的非线性相关性[8]。 Copula 函数 是一个连接函数,它连接随机向量
和边缘分布函数的联合分布函数
, 即:
详细文章及数学模型和解释见第4部分。
结论
基于经验 Copula 函数生成的多风电场出力 动态场景代入求解随机机组组合问题时,运行成本
小于不考虑波动性生成的静态场景,提高了含多风电场电力系统运行的经济性,说明了对风电功率的波动性进行建模的必要性与有效性,从而证明了本文提出的多风电场出力动态场景生成方法应用于电力系统机组组合的可行性。
然而,上述研究并未对多个风电场之间风电预测误差的时空相关性进行建模。因此,本文提出了一种基于 copula 理论的风电预测误差时空相关性建模方法,并利用河北北部四个风电场的实际风电预测误差数据验证了所提模型的有效性。验证结果表明,该方法可以有效地模拟风电预测误差的时空相关性,并检测多个风电场之间的独立性。同时,利用copula理论进行相关分析与其他线性相关分析方法相比具有更大的优势。
基于Copula理论的多风电场风电预测误差时空相关性建模研究
一、研究背景
随着生态环境的逐渐恶化,可再生能源特别是风能的开发利用在全球范围内受到广泛关注,并继续保持快速发展的水平。然而,由于风力发电固有的随机性和波动性,风电场的大规模并网必然会给电力系统带来电压波动、闪变等负面影响 。此外,存在同一风电基地内的多个风电场的风电预测误差具有很强的时空相关性的情况,正确拟合预测误差并准确建模多个风电场之间的时空相关性对于保证电力系统安全、稳定经济运行调度至关重要。多个地理位置相近的风电场的预测误差具有时空依赖性,这种相关性对电力系统的运行具有显著影响。
二、研究目的
本文旨在提出一种基于Copula理论的多风电场风电预测误差时空相关性建模方法,以准确刻画多个风电场风电预测误差之间的时空相关性,为电力系统的稳定经济运行调度提供支持。
三、Copula理论基础
四、建模方法
(一)边际分布拟合
通过比较不同拟合方法的拟合精度,选择拟合精度最高的基于KDE(核密度估计)的方法来拟合预测误差的边际分布。核密度估计是一种非参数估计方法,它不需要对数据的分布形式进行事先假设,能够较好地拟合数据的真实分布。对于一个给定的数据集 {x1,x2,⋯ ,xn}{x1,x2,⋯,xn},基于KDE的概率密度函数估计为: f^(x)=1nh∑i=1nK(x−xih)f^(x)=nh1∑i=1nK(hx−xi) 其中,K(⋅)K(⋅) 是核函数,hh 是带宽参数。通过调整核函数和带宽参数,可以得到不同的拟合效果,最终选择拟合精度最高的参数设置来确定预测误差的边际分布。
(二)高维建模
五、模型验证
利用四个风电场的实际预测误差数据对模型进行验证。将基于Copula函数生成的多风电场出力动态场景代入求解随机机组组合问题,计算运行成本,并与不考虑波动性生成的静态场景进行比较。
(一)数据收集
收集河北北部四个风电场的实际风电预测误差数据,数据涵盖了一定时间段内的风电预测误差值。
(二)验证过程
首先,按照上述建模方法对数据进行处理,得到基于Copula理论的多风电场风电预测误差时空相关性模型。然后,将生成的多风电场出力动态场景代入随机机组组合问题的求解模型中,计算出电力系统的运行成本。同时,在不考虑风电功率波动性的情况下,生成静态场景并代入相同的随机机组组合问题求解模型,计算相应的运行成本。
(三)结果分析
与实际依赖结构相比,基于Copula函数的方法可以有效地建模时空相关性,检测风电预测误差的独立性。仿真结果表明,基于经验Copula函数生成的多风电场出力动态场景代入求解随机机组组合问题时,运行成本小于不考虑波动性生成的静态场景。这一结果提高了含多风电场电力系统运行的经济性,说明了对风电功率的波动性进行建模的必要性与有效性,从而证明了本文提出的多风电场出力动态场景生成方法应用于电力系统机组组合的可行性。
六、研究优势
利用Copula理论进行相关分析与其他线性相关分析方法相比具有更大的优势。传统的线性相关分析方法只能捕捉随机变量之间的线性相关性,而Copula函数能够捕捉随机变量之间的非线性相关性,更加准确地刻画多个风电场风电预测误差之间的复杂依赖关系。
七、结论
本文提出的基于Copula理论的多风电场风电预测误差时空相关性建模方法,通过选择合适的边际分布拟合方法和Copula函数进行高维建模,并利用实际数据进行验证,证明了该方法的有效性。该方法可以有效地模拟风电预测误差的时空相关性,并检测多个风电场之间的独立性。同时,基于Copula理论的相关分析在处理风电预测误差相关性方面具有独特优势,为电力系统的稳定经济运行调度提供了有力的技术支持。未来的研究可以进一步探索更适合风电预测误差特点的Copula函数,以及如何将该模型应用于更复杂的电力系统运行场景中。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]徐箭,洪敏,孙元章,周过海.基于经验Copula函数的多风电场出力动态场景生成方法及其在机组组合中的应用[J].电力自动化设备,2017,37(08):81-89.DOI:10.16081/j.issn.1006-6047.2017.08.011.
[2]S. Xu, C. Liu, C. Su and C. Wang, "Correlation Analysis of Wind and Photovoltaic Power Based on Mixed Copula Theory and Its Application into Optimum Capacity Allocation," 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), 2019, pp. 976-980, doi: 10.1109/EI247390.2019.9061806.
🌈4 Matlab代码、数据、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取