基于二进制粒子群优化(BPSO)最佳PMU位置(OPP)配置研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于二进制粒子群优化(BPSO)的最佳PMU位置(OPP)配置研究

一、二进制粒子群优化(BPSO)的基本原理与改进

二、PMU位置优化(OPP)问题定义与约束

三、基于BPSO的OPP方法研究现状

四、典型应用案例与评估指标

五、挑战与未来方向

六、结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于二进制粒子群优化(BPSO)的最佳PMU位置(OPP)配置研究

基于二进制粒子群优化(BPSO)的最佳PMU位置(OPP)配置研究是一项涉及电力系统中相位测量单元(PMU)部署的研究。PMU是一种用于实时监测电力系统状态的设备,可以提供高精度的电力数据,对于电力系统的运行和控制非常重要。在研究中,通过使用BPSO算法,结合电力系统的拓扑结构和负荷分布等信息,寻找最佳的PMU位置配置,以实现电力系统的最佳监测覆盖和控制。

一、二进制粒子群优化(BPSO)的基本原理与改进

BPSO是粒子群优化(PSO)的离散版本,专为二进制空间优化问题设计。其核心原理是通过粒子群在二进制空间中搜索最优解,每个粒子的位置由0或1构成,速度决定位置翻转概率。关键步骤包括速度更新、Sigmoid函数映射概率、随机阈值判断位置更新等。公式表达为:

改进方向

  1. 转换函数优化:采用V型函数替代传统S型函数,增强局部搜索能力。
  2. 多样性增强:引入自适应变异策略,动态调整变异概率以避免早熟收敛。
  3. 信息融合:利用种群平均信息或全局极值,提升收敛速度与稳定性。

优缺点

  • 优点:适用于高维组合优化问题,参数少且实现简单。
  • 缺点:易陷入局部最优,参数敏感性高,大规模问题计算复杂度大。

二、PMU位置优化(OPP)问题定义与约束

OPP的目标是以最小PMU数量实现电力系统完全可观测性,同时满足成本、通信和物理约束。

  1. 数学模型
    • 目标函数:最小化总成本,即min⁡∑k=1nckyk,其中yk∈{0,1}表示是否在节点k安装PMU。
    • 约束条件:
  • 可观测性约束:所有节点需通过PMU直接测量或间接推导(如零注入总线)被覆盖。
  • 通道限制:PMU的电压/电流测量通道数不超过硬件容量。
  • 冗余度要求:例如总线可观测性指数(BOI)和总系统冗余指数(TSORI)。
  1. 特殊场景处理
    • 零注入总线(ZIB):通过逻辑约束调整可观测性规则。
    • 通信可靠性:需考虑光纤覆盖和冗余链路。

三、基于BPSO的OPP方法研究现状
  1. 经典BPSO在OPP中的应用

    • 编码设计:粒子位置向量表示PMU安装节点的二进制选择。
    • 适应度函数:结合PMU数量与可观测性覆盖率,如Fitness=α⋅PMU数量+β⋅未观测节点数Fitness=α⋅PMU数量+β⋅未观测节点数。
    • 约束处理:通过惩罚函数或启发式修复策略(如最短开停机时间修补)处理约束。
  2. 改进BPSO方法

    • BAPSO(Binary Accelerated PSO) :结合全局与局部拓扑,减少迭代次数,适用于大规模电网。
    • 混合算法:如BPSO与遗传算法(GA)结合,利用GA的交叉变异增强多样性。
    • 多目标优化:同时最小化PMU数量、最大化冗余度或状态估计精度。
  3. 性能对比

    • 与ILP对比:BPSO在复杂约束下表现更灵活,但ILP在小规模问题中精度更高。
    • 与其他启发式算法对比
  • 遗传算法(GA):BPSO收敛更快,但GA在全局搜索上更优。
  • 龙飞算法(DA):DA在多目标优化中表现更稳定。

四、典型应用案例与评估指标
  1. 案例研究

    • IEEE测试系统:如IEEE 14/30/118节点系统,验证BPSO在不同规模下的有效性。
    • 实际电网:如土耳其400 kV电网,BPSO减少PMU数量约20%。
  2. 评估指标

    • 可观测性覆盖率:确保所有节点可观测。
    • 经济性:PMU安装成本与通信基础设施费用。
    • 算法效率:收敛速度、迭代次数和计算时间。

五、挑战与未来方向
  1. 现存问题

    • 大规模电网中计算复杂度高。
    • 动态电网拓扑(如可再生能源波动)适应性不足。
  2. 改进方向

    • 分布式BPSO:利用并行计算加速大规模问题求解。
    • 深度强化学习融合:动态调整算法参数以适应电网变化。
    • 多类型PMU协同:结合M型(高精度)与P型(快速响应)PMU的配置优化。

六、结论

BPSO在OPP问题中展现了较强的适应性与灵活性,尤其在处理离散约束和高维优化时具有优势。通过算法改进(如BAPSO、混合策略)和硬件协同设计(如通信冗余),可进一步提升其工程实用性。未来需结合新型优化理论与电力系统动态需求,推动OPP方法向智能化、实时化方向发展。

📚2 运行结果

部分代码:

function  [Z, SORI]=IEEE_30_Bus(x1)
    Z = zeros(size(x1,1),1);
    nVar = size(x1,2);

    for ii = 1:size(x1,1)
        x=x1(ii,:);
    end

ldata = [
    1    2    0.0192    0.0575    0.0528    0    0    0    0    0    1    -360    360;
    1    3    0.0452    0.1652    0.0408    0    0    0    0    0    1    -360    360;
    2    4    0.057    0.1737    0.0368    0    0    0    0    0    1    -360    360;
    3    4    0.0132    0.0379    0.0084    0    0    0    0    0    1    -360    360;
    2    5    0.0472    0.1983    0.0418    0    0    0    0    0    1    -360    360;
    2    6    0.0581    0.1763    0.0374    0    0    0    0    0    1    -360    360;
    4    6    0.0119    0.0414    0.009    0    0    0    0    0    1    -360    360;
    5    7    0.046    0.116    0.0204    0    0    0    0    0    1    -360    360;
    6    7    0.0267    0.082    0.017    0    0    0    0    0    1    -360    360;
    6    8    0.012    0.042    0.009    0    0    0    0    0    1    -360    360;
    6    9    0    0.208    0    0    0    0    0.978    0    1    -360    360;
    6    10    0    0.556    0    0    0    0    0.969    0    1    -360    360;
    9    11    0    0.208    0    0    0    0    0    0    1    -360    360;
    9    10    0    0.11    0    0    0    0    0    0    1    -360    360;
    4    12    0    0.256    0    0    0    0    0.932    0    1    -360    360;
    12    13    0    0.14    0    0    0    0    0    0    1    -360    360;
    12    14    0.1231    0.2559    0    0    0    0    0    0    1    -360    360;
    12    15    0.0662    0.1304    0    0    0    0    0    0    1    -360    360;
    12    16    0.0945    0.1987    0    0    0    0    0    0    1    -360    360;
    14    15    0.221    0.1997    0    0    0    0    0    0    1    -360    360;
    16    17    0.0524    0.1923    0    0    0    0    0    0    1    -360    360;
    15    18    0.1073    0.2185    0    0    0    0    0    0    1    -360    360;
    18    19    0.0639    0.1292    0    0    0    0    0    0    1    -360    360;
    19    20    0.034    0.068    0    0    0    0    0    0    1    -360    360;
    10    20    0.0936    0.209    0    0    0    0    0    0    1    -360    360;
    10    17    0.0324    0.0845    0    0    0    0    0    0    1    -360    360;
    10    21    0.0348    0.0749    0    0    0    0    0    0    1    -360    360;
    10    22    0.0727    0.1499    0    0    0    0    0    0    1    -360    360;
    21    22    0.0116    0.0236    0    0    0    0    0    0    1    -360    360;
    15    23    0.1    0.202    0    0    0    0    0    0    1    -360    360;
    22    24    0.115    0.179    0    0    0    0    0    0    1    -360    360;
    23    24    0.132    0.27    0    0    0    0    0    0    1    -360    360;
    24    25    0.1885    0.3292    0    0    0    0    0    0    1    -360    360;
    25    26    0.2544    0.38    0    0    0    0    0    0    1    -360    360;
    25    27    0.1093    0.2087    0    0    0    0    0    0    1    -360    360;
    28    27    0    0.396    0    0    0    0    0.968    0    1    -360    360;
    27    29    0.2198    0.4153    0    0    0    0    0    0    1    -360    360;
    27    30    0.3202    0.6027    0    0    0    0    0    0    1    -360    360;
    29    30    0.2399    0.4533    0    0    0    0    0    0    1    -360    360;
    8    28    0.0636    0.2    0.0428    0    0    0    0    0    1    -360    360;
    6    28    0.0169    0.0599    0.013    0    0    0    0    0    1    -360    360;
];

    A=[];
    % Create Adjacency Matrix
    for c1=1:size(ldata,1)                  
        A(ldata(c1,1),ldata(c1,2))=1;  
        A(ldata(c1,2),ldata(c1,1))=1;
        A(ldata(c1,2),ldata(c1,2))=1;  
        A(ldata(c1,1),ldata(c1,1))=1; 
    end

    u=ones(nVar,1);
%     x=round(x);
    f=A*(x');
    a=f.*u;
    SORI = sum(a);
    d=find(a==0);
    if isempty(d) 
        Z=sum(x);
    else
        Z=numel(d)*nVar;  
    end
end
 

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]余芳.应激状态监测中基于二进制粒子群优化和KNN模型的算法研究[D].东南大学,2012.DOI:10.7666/d.Y2246586.

[2]刘斌,黄纯,李波,等.改进二进制粒子群算法在PMU优化配置中的应用[J].电力系统及其自动化学报, 2010(2):6.DOI:10.3969/j.issn.1003-8930.2010.02.002.

[3]刘斌.改进二进制粒子群算法在PMU优化配置中的应用[J].电力系统及其自动化学报, 2010(002):000.

🌈4 Matlab代码、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值