💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
基于二进制粒子群优化(BPSO)的最佳PMU位置(OPP)配置研究
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于二进制粒子群优化(BPSO)的最佳PMU位置(OPP)配置研究
基于二进制粒子群优化(BPSO)的最佳PMU位置(OPP)配置研究是一项涉及电力系统中相位测量单元(PMU)部署的研究。PMU是一种用于实时监测电力系统状态的设备,可以提供高精度的电力数据,对于电力系统的运行和控制非常重要。在研究中,通过使用BPSO算法,结合电力系统的拓扑结构和负荷分布等信息,寻找最佳的PMU位置配置,以实现电力系统的最佳监测覆盖和控制。
一、二进制粒子群优化(BPSO)的基本原理与改进
BPSO是粒子群优化(PSO)的离散版本,专为二进制空间优化问题设计。其核心原理是通过粒子群在二进制空间中搜索最优解,每个粒子的位置由0或1构成,速度决定位置翻转概率。关键步骤包括速度更新、Sigmoid函数映射概率、随机阈值判断位置更新等。公式表达为:
改进方向:
- 转换函数优化:采用V型函数替代传统S型函数,增强局部搜索能力。
- 多样性增强:引入自适应变异策略,动态调整变异概率以避免早熟收敛。
- 信息融合:利用种群平均信息或全局极值,提升收敛速度与稳定性。
优缺点:
- 优点:适用于高维组合优化问题,参数少且实现简单。
- 缺点:易陷入局部最优,参数敏感性高,大规模问题计算复杂度大。
二、PMU位置优化(OPP)问题定义与约束
OPP的目标是以最小PMU数量实现电力系统完全可观测性,同时满足成本、通信和物理约束。
- 数学模型:
- 目标函数:最小化总成本,即min∑k=1nckyk,其中yk∈{0,1}表示是否在节点k安装PMU。
- 约束条件:
- 可观测性约束:所有节点需通过PMU直接测量或间接推导(如零注入总线)被覆盖。
- 通道限制:PMU的电压/电流测量通道数不超过硬件容量。
- 冗余度要求:例如总线可观测性指数(BOI)和总系统冗余指数(TSORI)。
- 特殊场景处理:
- 零注入总线(ZIB):通过逻辑约束调整可观测性规则。
- 通信可靠性:需考虑光纤覆盖和冗余链路。
三、基于BPSO的OPP方法研究现状
-
经典BPSO在OPP中的应用:
- 编码设计:粒子位置向量表示PMU安装节点的二进制选择。
- 适应度函数:结合PMU数量与可观测性覆盖率,如Fitness=α⋅PMU数量+β⋅未观测节点数Fitness=α⋅PMU数量+β⋅未观测节点数。
- 约束处理:通过惩罚函数或启发式修复策略(如最短开停机时间修补)处理约束。
-
改进BPSO方法:
- BAPSO(Binary Accelerated PSO) :结合全局与局部拓扑,减少迭代次数,适用于大规模电网。
- 混合算法:如BPSO与遗传算法(GA)结合,利用GA的交叉变异增强多样性。
- 多目标优化:同时最小化PMU数量、最大化冗余度或状态估计精度。
-
性能对比:
- 与ILP对比:BPSO在复杂约束下表现更灵活,但ILP在小规模问题中精度更高。
- 与其他启发式算法对比:
- 遗传算法(GA):BPSO收敛更快,但GA在全局搜索上更优。
- 龙飞算法(DA):DA在多目标优化中表现更稳定。
四、典型应用案例与评估指标
-
案例研究:
- IEEE测试系统:如IEEE 14/30/118节点系统,验证BPSO在不同规模下的有效性。
- 实际电网:如土耳其400 kV电网,BPSO减少PMU数量约20%。
-
评估指标:
- 可观测性覆盖率:确保所有节点可观测。
- 经济性:PMU安装成本与通信基础设施费用。
- 算法效率:收敛速度、迭代次数和计算时间。
五、挑战与未来方向
-
现存问题:
- 大规模电网中计算复杂度高。
- 动态电网拓扑(如可再生能源波动)适应性不足。
-
改进方向:
- 分布式BPSO:利用并行计算加速大规模问题求解。
- 深度强化学习融合:动态调整算法参数以适应电网变化。
- 多类型PMU协同:结合M型(高精度)与P型(快速响应)PMU的配置优化。
六、结论
BPSO在OPP问题中展现了较强的适应性与灵活性,尤其在处理离散约束和高维优化时具有优势。通过算法改进(如BAPSO、混合策略)和硬件协同设计(如通信冗余),可进一步提升其工程实用性。未来需结合新型优化理论与电力系统动态需求,推动OPP方法向智能化、实时化方向发展。
📚2 运行结果
部分代码:
function [Z, SORI]=IEEE_30_Bus(x1)
Z = zeros(size(x1,1),1);
nVar = size(x1,2);
for ii = 1:size(x1,1)
x=x1(ii,:);
end
ldata = [
1 2 0.0192 0.0575 0.0528 0 0 0 0 0 1 -360 360;
1 3 0.0452 0.1652 0.0408 0 0 0 0 0 1 -360 360;
2 4 0.057 0.1737 0.0368 0 0 0 0 0 1 -360 360;
3 4 0.0132 0.0379 0.0084 0 0 0 0 0 1 -360 360;
2 5 0.0472 0.1983 0.0418 0 0 0 0 0 1 -360 360;
2 6 0.0581 0.1763 0.0374 0 0 0 0 0 1 -360 360;
4 6 0.0119 0.0414 0.009 0 0 0 0 0 1 -360 360;
5 7 0.046 0.116 0.0204 0 0 0 0 0 1 -360 360;
6 7 0.0267 0.082 0.017 0 0 0 0 0 1 -360 360;
6 8 0.012 0.042 0.009 0 0 0 0 0 1 -360 360;
6 9 0 0.208 0 0 0 0 0.978 0 1 -360 360;
6 10 0 0.556 0 0 0 0 0.969 0 1 -360 360;
9 11 0 0.208 0 0 0 0 0 0 1 -360 360;
9 10 0 0.11 0 0 0 0 0 0 1 -360 360;
4 12 0 0.256 0 0 0 0 0.932 0 1 -360 360;
12 13 0 0.14 0 0 0 0 0 0 1 -360 360;
12 14 0.1231 0.2559 0 0 0 0 0 0 1 -360 360;
12 15 0.0662 0.1304 0 0 0 0 0 0 1 -360 360;
12 16 0.0945 0.1987 0 0 0 0 0 0 1 -360 360;
14 15 0.221 0.1997 0 0 0 0 0 0 1 -360 360;
16 17 0.0524 0.1923 0 0 0 0 0 0 1 -360 360;
15 18 0.1073 0.2185 0 0 0 0 0 0 1 -360 360;
18 19 0.0639 0.1292 0 0 0 0 0 0 1 -360 360;
19 20 0.034 0.068 0 0 0 0 0 0 1 -360 360;
10 20 0.0936 0.209 0 0 0 0 0 0 1 -360 360;
10 17 0.0324 0.0845 0 0 0 0 0 0 1 -360 360;
10 21 0.0348 0.0749 0 0 0 0 0 0 1 -360 360;
10 22 0.0727 0.1499 0 0 0 0 0 0 1 -360 360;
21 22 0.0116 0.0236 0 0 0 0 0 0 1 -360 360;
15 23 0.1 0.202 0 0 0 0 0 0 1 -360 360;
22 24 0.115 0.179 0 0 0 0 0 0 1 -360 360;
23 24 0.132 0.27 0 0 0 0 0 0 1 -360 360;
24 25 0.1885 0.3292 0 0 0 0 0 0 1 -360 360;
25 26 0.2544 0.38 0 0 0 0 0 0 1 -360 360;
25 27 0.1093 0.2087 0 0 0 0 0 0 1 -360 360;
28 27 0 0.396 0 0 0 0 0.968 0 1 -360 360;
27 29 0.2198 0.4153 0 0 0 0 0 0 1 -360 360;
27 30 0.3202 0.6027 0 0 0 0 0 0 1 -360 360;
29 30 0.2399 0.4533 0 0 0 0 0 0 1 -360 360;
8 28 0.0636 0.2 0.0428 0 0 0 0 0 1 -360 360;
6 28 0.0169 0.0599 0.013 0 0 0 0 0 1 -360 360;
];
A=[];
% Create Adjacency Matrix
for c1=1:size(ldata,1)
A(ldata(c1,1),ldata(c1,2))=1;
A(ldata(c1,2),ldata(c1,1))=1;
A(ldata(c1,2),ldata(c1,2))=1;
A(ldata(c1,1),ldata(c1,1))=1;
end
u=ones(nVar,1);
% x=round(x);
f=A*(x');
a=f.*u;
SORI = sum(a);
d=find(a==0);
if isempty(d)
Z=sum(x);
else
Z=numel(d)*nVar;
end
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]余芳.应激状态监测中基于二进制粒子群优化和KNN模型的算法研究[D].东南大学,2012.DOI:10.7666/d.Y2246586.
[2]刘斌,黄纯,李波,等.改进二进制粒子群算法在PMU优化配置中的应用[J].电力系统及其自动化学报, 2010(2):6.DOI:10.3969/j.issn.1003-8930.2010.02.002.
[3]刘斌.改进二进制粒子群算法在PMU优化配置中的应用[J].电力系统及其自动化学报, 2010(002):000.