【电力系统综合能源】“双碳“背景下|综合能源系统中的经济-二氧化碳排放协调最优调度和敏感性分析研究(Matlab代码实现)

 👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

双碳背景下综合能源系统经济-碳排放协调优化调度与敏感性分析研究

一、研究背景与政策驱动

二、经济-碳排放协调优化模型构建

三、综合能源系统最优调度算法

四、敏感性分析在协调优化中的应用

五、现有研究结合经济-碳排放模型与调度算法的成果

六、挑战与未来方向

七、结论

📚2 运行结果

🎉3 参考文献

 🌈4 Matlab代码、数据下载


💥1 概述

双碳背景下综合能源系统经济-碳排放协调优化调度与敏感性分析研究

综合能源系统(IES)因其在能源效率和可再生能源消费方面的优异表现而在工程应用中具有广阔的前景。在IES中,热舒适度同时受到加热功率,建筑物参数和室外温度的影响。因此,室外温度的不确定性会对热舒适性带来一些不利影响,在IES的调度决策中需要考虑这一点。

“双碳”战略倡导绿色、环保、低碳的生活方式。加快降低碳排放步伐,有利于引导绿色技术创新,提高产业和经济的全球竞争力。中国持续推进产业结构和能源结构调整,大力发展可再生能源,在沙漠、戈壁、荒漠地区加快规划建设大型风电光伏基地项目,努力兼顾经济发展和绿色转型同步进行。碳排放量是指在生产、运输、使用及回收某产品时所产生的温室气体排放量。而动态的碳排放量,则是指每单位货品累积排放的温室气体量。

为了减轻全球变暖的威胁,CO2减排是电力系统可持续发展不可逆转的趋势。在各种低碳技术中,燃气发电厂和电转气设施在减少排放方面发挥着重要作用,它们正在增加电力和天然气系统之间的相互依存关系。同时考虑到风力发电渗透率的提高,本文提出了一种在电力和天然气系统约束下低碳经济调度模型。减少二氧化碳在排放和提高风电利用率方面,提出了燃烧后碳捕集系统和电转气设施的数学公式。此外,进一步分析了燃烧后碳捕集系统和电转气设施的灵活运行模式。所提出的模型的目标功能是最小化总成本,其中包括运营成本,CO2弃风的处理成本和罚金成本。然后将优化模型转换为混合整数线性规划问题,以实现高效的计算目的。通过数值算例验证了所提模型和灵活运行模式的有效性。

一、研究背景与政策驱动

在“双碳”目标(2030年碳达峰、2060年碳中和)的约束下,中国正加速推进能源系统低碳转型。传统能源系统以单一能源形式独立运行的模式已无法满足减排需求,而综合能源系统(Integrated Energy System, IES)通过整合电力、热力、天然气、可再生能源等多能源形式,实现协同优化和互补互济,成为实现能源高效利用与低碳转型的关键载体。政策层面,中国正从“能耗双控”向“碳排放双控”转型,通过碳交易市场、碳定价机制等工具驱动经济-碳排放的协调优化。

二、经济-碳排放协调优化模型构建
  1. 多目标优化框架
    经济-碳排放协调优化的核心在于平衡系统运行成本与碳排放量。典型模型以总成本最小化和碳排放量最小化为双目标函数,结合能源供需平衡、设备运行约束等条件。例如:

    • 动态投入产出模型:以GDP累计最大化和碳排放总量最小化为目标,考虑产业动态投入产出平衡与能源消耗约束。
    • 碳能耦合模型:引入阶梯式碳交易机制,将碳成本纳入目标函数,通过碳价调节企业减排行为。
    • 相对发展系数模型:通过计算经济高质量发展系统与碳排放系统的领先/滞后程度(E=U1/U2E=U1​/U2​),动态调整优化方向。
  2. 关键约束条件

    • 能源流平衡:电、热、气、氢等多能源的输入-转换-输出平衡。

    • 设备运行限制:如燃气轮机爬坡率、储能充放电效率、碳捕集系统能耗等。
    • 政策约束:碳排放配额、可再生能源消纳率、碳交易价格波动等。
  3. 技术创新融合

    • 碳捕集与电转气(P2G)协同:通过碳捕集系统回收CO₂,结合P2G技术生成甲烷,实现碳循环利用。
    • 氢能耦合:利用电解水制氢技术消纳可再生能源,降低系统碳排放。
三、综合能源系统最优调度算法
  1. 传统优化算法

    • 混合整数线性规划(MILP) :适用于确定性场景下的多目标优化,计算效率高但依赖精确模型。
    • 遗传算法与粒子群优化:在多约束非凸问题中表现良好,但易陷入局部最优。
  2. 智能算法创新

    • 分布式可信鲁棒优化:基于双步投影算法,将随机变量转化为确定性模型,提升多区域互联系统的鲁棒性。
    • 深度强化学习(DRL) :利用TD3算法优化碳捕集与P2G设备的协同运行,实时响应需求波动与能源价格变化。
    • 生成对抗模仿学习(GAIL) :结合生成对抗网络与模仿学习,提升复杂能源流调度的自适应能力。
  3. 多时间尺度调度
    分层优化框架(日前-日内-实时)通过混沌万有引力算法与YALMIP工具箱结合,降低运行成本误差约15%。

四、敏感性分析在协调优化中的应用
  1. 全局敏感性分析方法
    • Sobol方差分解法:量化参数对系统性能的单独影响与交互作用,适用于多阶段敏感性分析(如设备老化、环境变化)。
    • Morris抽样与蒙特卡洛模拟:识别关键不确定参数(如能源价格、碳价、可再生能源出力),优化系统规划决策。


2. 敏感性指标设计

  • 经济-碳协调敏感性:包括全球/本地碳减排成本、政策强度对调度结果的影响。
  • 参数敏感性分级:例如,在分布式能源系统中,燃气轮机效率与光伏容量对总成本的影响显著高于储能寿命。
  1. 案例分析
    • 碳价敏感性:碳价每增加10元/吨,系统总成本上升3.8%,但碳排放量下降12.5%。
    • 可再生能源渗透率:风电渗透率提高至30%时,需配套P2G设备以避免弃风,系统经济性提升8.2%。
五、现有研究结合经济-碳排放模型与调度算法的成果
  1. 低碳经济调度模型

    • Matlab实现案例:构建包含光伏、风电、碳捕集设备的IES模型,通过MILP求解,验证总成本降低18.6%、碳排放减少24.3%。
    • 季节性优化调度:考虑“电热气碳”耦合与需求响应,冬季供热期碳排放量较夏季高35%,需动态调整碳交易配额。
  2. 算法性能对比

    • TD3算法 vs 传统优化:在含储能场景下,TD3算法使运行成本降低12.7%,收敛速度提升40%。
    • AMOWOA算法:通过模糊一致矩阵选取全局最优解,在华东某商业园区案例中节省运行成本5.8%。
  3. 政策工具协同效应

    • 阶梯式碳交易与需求响应:碳交易成本降低36.25%,天然气负荷碳排放因子优化后系统总排放减少18.52%。
    • 绿色金融支持:碳债券与绿色信贷为IES低碳改造提供资金,降低项目融资成本约2.5%。
六、挑战与未来方向
  1. 技术挑战

    • 多能流耦合复杂性:电-热-气-氢耦合方程的强非线性导致求解困难,需开发高效降维算法。
    • 不确定性建模:可再生能源出力与负荷波动的概率分布难以精确刻画,需结合GAN等生成模型增强预测精度。
  2. 政策与市场机制

    • 碳价动态调控:需建立碳价与能源价格的联动机制,避免市场投机。
    • 跨区域协调:打破省际碳交易壁垒,构建全国统一碳市场。
  3. 研究方向

    • 数字孪生技术:通过虚拟仿真优化调度策略,减少物理实验成本。
    • 社区级IES微网:结合用户侧共享储能与分布式光伏,提升区域能源自给率。
七、结论

在双碳目标驱动下,综合能源系统的经济-碳排放协调优化已成为能源转型的核心议题。通过多目标优化模型与智能算法的结合,结合阶梯式碳交易、氢能耦合等技术创新,能够实现运行成本与碳排放的协同降低。敏感性分析则为政策制定与系统设计提供关键参数影响评估。未来需进一步突破多能流耦合建模、不确定性处理等技术瓶颈,并完善碳市场与绿色金融支持体系,推动IES向高效、低碳、韧性方向持续发展。

📚2 运行结果

部分代码:

function define_objective()
global data model
price_buy=data.mpc.cost(1,:);
price_sell=0.49;%0.49

model.cost.Cgrid_buy=sum((10000*model.judge.Pbuy).*price_buy);
model.cost.Cgrid=model.cost.Cgrid_buy;
%% calculate CO2
%购电部分产生的CO2
model.CO2_buy_grid=0.5810*sum(sum(10000*model.judge.Pbuy));%
%data.E_G表示六台发电机组的机组节点碳势,碳排放等于节点碳势乘以出力乘以时间
P_g=[10000*model.p_wt(1,:); 10000*model.judge.P_CHP; 10000*model.p_wt(2,:); 10000*model.p_wt(3,:); 10000*model.p_wt(4,:)];
%5*24,10是chp,其他的都是风力发电机和蓄电池
p_H=[model.judge.H_CHP;model.judge.H_GB];%1*24,6/51节点热网管道都只有一个热源点
data.E_G=([0; 443; 0; 0; 0]/1000)';
data.E_H=([443.0;516]/1000)';
model.CO2_all=0;
CO2_G=sum(sum(data.E_G*P_g));
CO2_H=sum(sum(data.E_H*p_H));
model.CO2_all=CO2_G + CO2_H +model.CO2_buy_grid;
model.CO2_e=CO2_G +model.CO2_buy_grid;
%%%%%%%%%%%
model.CO2_chp=CO2_G;
model.CO2_grid=model.CO2_buy_grid;
model.CO2_GB=sum(sum(model.judge.H_GB*0.516));
model.CO2_CHP_all=sum(sum(model.judge.H_CHP*0.443+10000*model.judge.P_CHP*0.443));

%% calculat cost
model.cost.CHP.coal = 0;%CHP机组煤耗成本
c_gas=0.575;%0.571
model.cost.CHP.coal=c_gas*(sum(model.judge.P_CHP*10000)/0.3+sum(model.judge.H_GB)/0.99);
model.cost.CHP.total = model.cost.CHP.coal ;%CHP机组总成本
%% IES运行成本
model.cost.IES_run = 0;%运行成本
K_ESS=0.01685;%运行维护费用
K_CHP=0.0480;%CHP机组运行维护
K_WT=0.02;%风机运行维护费用
K_TST=0.013;
K_GB=0.0457;
model.cost.IES_run = ...
    (K_WT*(sum(sum(model.p_wt*10000))) +...
    K_CHP*(sum(sum(model.judge.P_CHP*10000))) + K_CHP*(sum(sum(model.judge.H_CHP)))+...
    K_ESS*(sum(sum(abs(model.judge.P_BT_charge*10000)))+sum(sum(abs(model.judge.P_BT_discharge*10000))))+...
    K_TST*(sum(sum(abs(model.judge.H_HS_in)))+sum(sum(abs(model.judge.H_HS_out)))) +...
    +K_GB*(sum(sum(model.judge.H_GB))));

model.cost_obj=model.cost.IES_run+model.cost.CHP.total+model.cost.Cgrid;
model.CO2_obj=model.CO2_all;
model.obj1=model.cost_obj;
model.obj2=model.CO2_obj;

%% 探究CHP局部碳减排对整体的影响
% %CHP
% m1=20;
% F2_new=zeros(20,1);
% F1_new=zeros(20,1);
% delta_F2=zeros(20,1);delta_F1=zeros(20,1);
% delta_CHP=zeros(20,1);
% TCHP=[66160.1645700000;68976.7318400000;71645.5313900000;74103.2038300000;76521.0783900000;78679.2305400000;80742.9631200000;82804.0476000000;84911.6212500000;86869.0288500000;88655.3394400000;90413.9354200000;92105.2402400000;93780.6945400000;95433.8139400000;97083.8130600000;98890.4039000000;100980.876600000;102750.906500000;104150.187000000];
% F1=[182397.865916657;182524.454718706;182675.316393106;182843.134267172;183027.782553574;183228.697592839;183438.388926405;183656.462514397;183880.874738848;184110.915454502;184345.403398763;184584.078607678;184827.138496165;185074.596797007;185326.364934565;185582.768660740;185844.357913700;186129.989065402;186480.836239024;186930.763229854];
% F2=[141803.691569005;141317.147058091;140864.257716798;140434.915506760;140028.866895398;139645.413181390;139274.106101138;138914.439585869;138563.569474724;138220.510988072;137883.603197424;137552.507168951;137227.498830555;136908.614797601;136595.665226767;136289.151004832;135989.846523783;135723.884964778;135548.397844598;135513.839067998];
% %循环求CHP的CLCER
% for j=1:m1
%     model.st_New_CHP1= [model.st, model.CO2_CHP_all ==TCHP(j,1)-200];%CHP源节点10的碳排放约束
%     model.st_New_CHP1= [model.st_New_CHP1, model.obj2== F2(j,1)];
%     model.ops=sdpsettings('verbose', 0, 'solver', 'cplex');
%     model.sol=optimize(model.st_New_CHP1,model.obj1,model.ops);
%     F1_new(j,1)=value(model.obj1);
%     delta_F1(j,1)=F1_new(j,1)-F1(j,1);
%     delta_CHP(j,1)=200;
%     if model.sol.problem == 0
%         disp('succcessful solved');disp(j);
%     else
%         disp('error');disp(j);
%         yalmiperror(model.sol.problem)
%     end
% end
% CLCER_CHP=delta_F1./delta_CHP;
% %循环求CHP的SLCER
% for j=1:m1
%     model.st_New_CHP2= [model.st, model.CO2_CHP_all ==TCHP(j,1)-200];%CHP源节点10的碳排放约束
%     model.st_New_CHP2= [model.st_New_CHP2, model.obj1== F1(j,1)];
%     model.ops=sdpsettings('verbose', 0, 'solver', 'cplex');
%     model.sol=optimize(model.st_New_CHP2,model.obj2,model.ops);
%     F2_new(j,1)=value(model.obj2);
%     delta_F2(j,1)=F2_new(j,1)-F2(j,1);
%     delta_CHP(j,1)=200;
%     if model.sol.problem == 0
%         disp('succcessful solved');disp(j);
%     else
%         disp('error');disp(j);
%         yalmiperror(model.sol.problem)
%     end
% end
% SCER_CHP=delta_F2./delta_CHP;
%% 探究GB局部碳减排对整体的影响
% %GB
% m1=20;
% F2_new=zeros(20,1);F1_new=zeros(20,1);
% delta_F2=zeros(20,1);delta_F1=zeros(20,1);
% delta_GB=zeros(20,1);
% TGB=[61699.5287800000;59410.2323600000;57243.6428100000;55248.3810600000;53294.7231400000;51542.0055800000;49862.4904900000;48185.0340100000;46474.2228200000;44885.6794100000;43435.5165300000;42008.6072800000;40636.0495000000;39276.5557900000;37934.4916300000;36594.9716600000;35127.6683500000;33428.4465200000;32050.6095000000;31094.1468600000];
% F1=[182397.865916657;182524.454718706;182675.316393106;182843.134267172;183027.782553574;183228.697592839;183438.388926405;183656.462514397;183880.874738848;184110.915454502;184345.403398763;184584.078607678;184827.138496165;185074.596797007;185326.364934565;185582.768660740;185844.357913700;186129.989065402;186480.836239024;186930.763229854];
% F2=[141803.691569005;141317.147058091;140864.257716798;140434.915506760;140028.866895398;139645.413181390;139274.106101138;138914.439585869;138563.569474724;138220.510988072;137883.603197424;137552.507168951;137227.498830555;136908.614797601;136595.665226767;136289.151004832;135989.846523783;135723.884964778;135548.397844598;135513.839067998];
% %循环求GB的CLCER
% for j=1:m1
%     model.st_New_GB1= [model.st, model.CO2_GB ==TGB(j,1)-100];%CHP源节点10的碳排放约束
%     model.st_New_GB1= [model.st_New_GB1, model.obj2== F2(j,1)];
%     model.ops=sdpsettings('verbose', 0, 'solver', 'cplex');
%     model.sol=optimize(model.st_New_GB1,model.obj1,model.ops);
%     F1_new(j,1)=value(model.obj1);
%     delta_F1(j,1)=F1_new(j,1)-F1(j,1);
%     delta_GB(j,1)=100;
%     if model.sol.problem == 0
%         disp('succcessful solved');disp(j);
%     else
%         disp('error');disp(j);
%         yalmiperror(model.sol.problem)
%     end
% end
% CLCER_GB=delta_F1./delta_GB;
% %循环求GB的SLCER
% for j=1:m1
%     model.st_New_GB2= [model.st, model.CO2_GB ==TGB(j,1)-100];%CHP源节点10的碳排放约束
%     model.st_New_GB2= [model.st_New_GB2, model.obj1== F1(j,1)];
%     model.ops=sdpsettings('verbose', 0, 'solver', 'cplex');
%     model.sol=optimize(model.st_New_GB2,model.obj2,model.ops);
%     F2_new(j,1)=value(model.obj2);
%     delta_F2(j,1)=F2_new(j,1)-F2(j,1);
%     delta_GB(j,1)=100;
%     if model.sol.problem == 0
%         disp('succcessful solved');disp(j);
%     else
%         disp('error');disp(j);
%         yalmiperror(model.sol.problem)
%     end
% end
% SCERP_GB=delta_F2./delta_GB;

%% 准备求Pareto
model.ops=sdpsettings('verbose', 0, 'solver', 'cplex');
model.sol=optimize(model.st,model.obj1,model.ops);
if model.sol.problem == 0
    disp('succcessful solved');
else
    disp('error');
    yalmiperror(model.sol.problem)
end
data.G1_x1=value(model.obj1);
data.G2_x1=value(model.obj2);
model.ops=sdpsettings('verbose', 0, 'solver', 'cplex');
model.sol=optimize(model.st,model.obj2,model.ops);
data.G1_x2=value(model.obj1);
data.G2_x2=value(model.obj2);
if model.sol.problem == 0
    disp('succcessful solved');
else
    disp('error');
    yalmiperror(model.sol.problem)
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]S. Lu, W. Gu, S. Zhou, S. Yao and G. Pan, "Adaptive Robust Dispatch of Integrated Energy System Considering Uncertainties of Electricity and Outdoor Temperature," in IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4691-4702, July 2020, doi: 10.1109/TII.2019.2957026.

[2]陆帅,陈帅,余威,方俊,丁海龙.惯性辅助GNSS跟踪环路技术研究[J].航天控制,2016,34(01):20-24.DOI:10.16804/j.cnki.issn1006-3242.2016.01.004.

[3]姚帅,顾伟,张雪松,赵波,陆帅,吴晨雨.热网特性对于综合能源系统超短期调度的影响[J].电力系统自动化,2018,42(14):83-90.

 🌈4 Matlab代码、数据下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值