基于主动学习和Wi-Fi感知的人体识别系统

本文提出了一种名为ALSensing的系统,它结合主动学习和Wi-Fi感知来实现人体行为识别。相较于传统深度学习系统,ALSensing在较少的已标记训练样本下(如3.7%和15%)能达到接近的识别精度。该系统通过Wi-Fi信号参数(如CSI)的变化来识别行为,利用Hampel滤波器和主成分分析处理数据,再通过主动学习策略选择困难样本进行模型训练。实验表明,ALSensing在减少90%标记样本需求的同时,保持了与全监督方法相当的性能。
摘要由CSDN通过智能技术生成

摘要

基于深度学习和Wi-Fi感知的人体行为识别系统已逐步成为主流的研究方向,在近年来得到了长足的发展。然而,现有的系统严重依赖于大量带标记样本以达到良好的识别精度。这导致了大量的人力成本用于标记数据,同时现有系统也难以应用于实际场景。针对该问题,提出一种将主动学习应用于Wi-Fi感知的人体行为识别系统——ALSensing。该系统是第一个将主动学习和Wi-Fi人体行为识别相结合的系统,能够利用有限数量的已标记训练样本构建一个性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值