基于机器学习的力场模型研究综述

本文综述了机器学习在构建力场中的应用,重点关注sGDML、SchNet和ForceNet等模型。机器学习力场通过自动化建模平衡计算效率和精度,有望替代传统力场方法。尽管在复杂系统和大分子体系中仍面临挑战,未来的研究方向包括降低计算复杂度、优化模型性能和提高模型的可扩展性。
摘要由CSDN通过智能技术生成

目录

引言

1 理论基础

1.1 基于内核的方法

1.2 神经网络

图1

2 机器学习力场模型

2.1 sGDML

2.2 SchNet

2.3 ForceNet

3 总结与展望


摘要

【应用背景】在过去的几十年里,由于原子结构以及计算的复杂性,传统力场方法在解决某些问题时较为吃力。【目的】而机器学习方法的引入,有望解决许多曾经无法攻克的难题,平衡计算效率和计算精度之间的制约关系。【方法】该方法不依赖于先入为主的知识,通过从小规模高精度分子动力学模拟数据中学习来对力场进行建模,同时对原子核和核外电子的运动做了近似假设,从而很大程度上简化了力场的生成过程。【结果】机器学习力场旨在达到与传统力场几乎同样的精度并大幅度地提高计算效率。本文概述了机器学习力场的发展以及其相关理论知识,介绍了几种比较常见的机器学习力场方法,最后探讨了机器学习力场的不足以及未来需要克服的挑战。

关键词: 半导体领域机器学习; 机器学习力场; sGDML; 神经网络

引言

由于材料领域的飞速发展,现如今已经积累了大量的数据以及无数相关的问题有待解决[1]。相比传统方法研究材料动力学性质,急需一种高效快速的方法来解决这一难题。近年来,机器学习(Machine Learning, ML)在各个领域都发挥了重要的作用,因此,用机器学习的方法来解决现有的问题不失为一种不错的选择。

在研究材料动力学性质的方法中,分子动力学使用较为广泛,它是以量子力学、经典力学、统计力学为基础,通过牛顿力学来模拟分子系统的运动状态,并利用计算机数值求解运动方程的方法。传统的分子动力学计算速度快,能一定程度上反映材料的稳定性,热力学性质等多种性质,但由于其使用的是较为简单的经验力场,计算精度有限;而从头算分子动力学(Ab initio molecular dynamics, AIMD)将分子动力学与密度泛函理论(Density Functional Theory, DFT)相结合,将系统中的粒子划分成原子和电子,原子的质量大且运动速度较慢,可以用经典力学来处理,而电子的质量小且运动速度较快,可以用密度泛函理论来处理。该方法的提出可以很好地解决分子动力学无法对化学键的断裂描述的问题[2]

AIMD由于考虑了电子相互作用的细节,并且使用量子力学方法对全体原子进行了统一考虑,因此计算精度大大提高,但也因此计算代价高昂,往往只能应用于数十个到数百个原子的小体系,且模拟时长最多到纳秒级[3-4]。对于体系较大的系统,一般采用传统经验力场来建模,传统的科学方法使用一些近似值求解,分析计算,并用更高水平的计算或实验的参考数据验证所获得的结果。但是当所研究的系统过于复杂,仅靠现有知识无法建立可靠的模型时,这种方法并不是十分有效。并且力场往往在牺牲计算效率的条件下才能获得较高的计算精度。

然而,一个精确力场的搭建十分耗时,并且需要大量的专业知识和技术。而机器学习方法可以有效解决传统方法无法解决的复杂问题[5],在一定程度上可以有效地平衡计算效率和计算精度之间的制约关系,并将AIMD方法的计算精度和经典力场的计算效率融合,使应用于研究更大的分子系统体系成为可能[6]

机器学习力场(Machine Learning Force Fields, MLFF)[7⇓⇓⇓-11]是通过一些机器学习算法,采用生成的结构特征作为输入来进行参数拟合。它通过从数据中的结构或者模式中学习输入和输出之间的功能关系,而不依赖于先入为主的固有化学键的概念或关于相互作用的知识[12],从数据中学习训练[6]。该方法的提出可以有效地缩小与传统力场方法的计算精度差距,同时可以提高计算效率,减少人工干预。在理想状况下,经过训练的模型可以反映出量子力学潜在的有效规则。因此, 使用AIMD的结果数据作为训练集,使用机器学习力场方法训练得到的力场,有望在接近AIMD的精度情况下获得接近甚至超过传统力场的计算效率[13-14]。目前,实现机器学习力场模型的较多,如深度神经网络[15]等,深度神经网络训练时通常需要大量的数据,在自然科学中收集这样的数据集往往是不可能的,因为每个训练点都是计算成本高昂的从头算或其他实验测量得来的。因此,机器学习力场模型的数据效率成为一个关键因素。这也是机器学习力场模型建立的初衷,即将基本物理定律或知识直接实现到机器学习模型的体系结构中。与传统机器学习方法相比,当使用有限的参考数据集时,此类模型可以表现出优越的性能。此外,基于知识的机器学习力场模型可以深入了解复杂的原子间相互作用[16-17]。本文将在第1节对材料机器学习的基础理论知识进行简单的讲解;并在第2节对使用较为广泛的机器学习力场模型进行介绍,探索方法的可行性和有效性;最后在第3节进行总结和分析。

1 理论基础

在半导体领域,一般用薛定谔方程(Schrödinger Equation, SE)来描述原子核和电子的相互作用。但SE只能对极其简单的体系进行求解,如氢原子等。在求解复杂的体系时,随着系统复杂度的增加,计算成本也随之飞快增加,与此同时,无法很好地平衡计算成本和计算精度之间的关系。因此,用SE来求解复杂体系存在较大困难。玻恩-奥本海默近似(Born-Oppenheimer approximation, BO近似)的提出可以很好地改善这个现象,BO近似将电子的运动和原子核的运动分开,因原子核质量比电子质量大几个量级,可几乎认定为是静止的,从而可以忽略掉原子核的运动。因此,可将体系简化为电子的薛定谔方程来求解,即电子的能量取决于核外的电势,而电势又由电子的位置和核电荷数决定。通过将原子核和电子的库仑斥力相加,即可得到系统的总势能[6]

BO近似下,系统的能量是原子核位置的函数,即一个分子几何结构映射出一个体系能量值,不同原子位置的能量一起构成了势能面(Potential Energy Surface, PES)。一个封闭的系统需要满足能量守恒定律。在分子体系中,能量由动能和势能构成。因此,力一定是势能相对于原子位置的负梯度。这样可以保证当原子运动时,原子们总是能够获得与损失的势能相同的动能[6]

虽然BO近似在一定程度上简化了SE方程的求解,但近似下的计算仍具有较大的困难。因此,想要得出分子动力学模拟的每个时间步下的能量和力仍是比较困难的[19]。而力场的提出可以在一定程度上避开方程求解的问题。从而将问题的难点从方程求解转换到寻找合适的力场以及力场参数化上来。而机器学习方法可以将这种困难通过从数据中学习自动化实现,将先验知识融合到更为复杂的模型的构建中[20],从而简化了力场的构建过程。本文将在1.11.2节概述机器学习中两种方法,基于内核的方法以及神经网络(Neural Network, NN)方法。

1.1 基于内核的方法

核函数方法起源于非线性支持向量机模型(Support Vector Mmachines, SVM)。在核方法中,内核是核心,它将原始空间中的向量作为输入向量,返回特征空间中向量的点积函数,即将输入空间映射到高维特征空间。新的特征空间具备更强的表达能力以及在原始特征空间中的非线性拟合效果[1],它将原始空间中的非线性拟合转换为新特征空间中的线性拟合。使用核函数,不需要显式地将数据嵌入到空间中来,这样可以有效地简化复杂的计算。但核函数对于较大的数据集并不十分受用,因为无法存储整个核矩阵,因此可能需要重新计算核函数。基于内核的方法不需要知道特征空间以及转换函数,同时使在高维特征空间中以低计算成本获取线性关系成为可能。

可以看出,机器学习模型的性能高低与核函数的选取息息相关。因此,选择一个合适的核函数对于机器学习方法具有十分重要的意义。

1.2 神经网络

神经网络是通过模拟生物神经元相互传递信号的方式,由许多相互连接的处理单元组成的非线性自适应信息处理系统[21],旨在对神经元形成的复杂网络建模[6],从而达到学习经验的目的。在数据选择上,神经网络通常需要较多的训练数据才能达到较为理想的计算精度,但同时,它们也可以更好地应用于较大的数据集中。神经网络可以通过对输入数据进行高维特征映射,转换成特征描述符(descriptor, desc),从而通过特征描述符作为输入来进行参数的拟合[22],学习构建出力场[19]

在神经网络中,输入层和输出层的节点数量比较容易确定。输入层的神经元数量等于数据中输入变量的数量,输出层神经元的数量与每个输入关联的输出的数量相同。往往困难之处在于确定合适的隐藏层数量以及其节点数量。隐藏层的层数不同,网络模型实现的功能也并不相同。

神经网络至少具备一个隐藏层&

  • 22
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值