3BLUE1BROWN线性代数笔记

向量是什么

物理专业:向量是空间中的箭头,决定一个向量的是它的长度和它所指的方向,可自由移动

计算机专业:向量是有序的数字列表

数学专业:向量可以是任何东西,只要保证两个向量相加以及数字与向量相乘是有意义的即可

向量加法和向量数乘贯穿线性代数始终

线性组合、张成的空间与基

i(0,1)j(1,0) 是xy坐标系的“基向量”

对于大部分二维向量对来说,它们张成的空间是整个无限大的二维平面;如果共线,它们张成的空间是一条直线。

有多个向量,可以移除其中一个而不减小张成的空间,则向量是“线性相关”的;即一个向量可以表示为其他向量的线性组合,因为这个向量已经落在其它向量张成的空间之中。如果所有的向量都给张成的空间增添了新的维度,则是“线性无关”的。

基的严格定义:张成该空间的一个线性无关的向量集

矩阵与线性变换

线性变换:1.直线在变换后仍然保持为直线,不能有所弯曲2.原点必须保持固定。即保持网格线平行且等距分布的变换。

矩阵乘法与线性变换复合

两个矩阵相乘有着几何意义,也就是两个线性变换相继作用。

矩阵相乘时,先后顺序影响结果,交换律不成立。但结合律成立。

行列式

变化的行列式:一个给定区域面积增大或减小的比例。若为负数,则变换改变了空间的定向。三维空间则为体积缩放比例,若为负数则坐标系不符合右手定则。

逆矩阵、列空间与零空间

线性方程组:未知量放在等号左边,剩余的常数项放在等号右边,将同一个未知量竖直对齐,必要时添加系数0。

求解Ax=v 意味着我们找一个向量x,使它在变换后与v 重合。

行列式不为0时,可以通过对v 进行A 的逆变换找到x ,即等式左边同乘A^(-1) , A^(-1)Ax=A^(-1)x=A^(-1)v

秩(Rank):代表着变换后空间的维数。当变换的结果为一条直线时,也就是说结果是一维的,我们称这个变换的秩为1;如果变换后的向量落在某个二维平面上,我们称这个变换的秩为2。对于2×2 的矩阵,它的秩最大为2,意味着基向量仍旧能张成整个二维空间,并且矩阵的行列式不为0。

不管是一条直线、一个平面还是三维空间等,所有可能的变换结果的集合,被称为矩阵的列空间。列空间即矩阵的列所张成的空间。更精确的秩的定义是列空间的维数。当秩达到最大值时,意味着秩与列数相等,我们称之为满秩

零向量一定在列空间中,因为线性变换必须保持原点位置不变。对于一个满秩变换来说,唯一能在变换后落在远点的就是零向量自身。但是对于一个非满秩的矩阵来说,它将空间压缩到一个更低的维度上,也就是说有一系列向量在变换后成为零向量。

变换后落在原点的向量的集合,被称为矩阵的零空间。变换后的一些向量落在零向量上,而零空间正是这些向量所构成的空间。对于线性方程组来说,当向量v 恰好为零向量时,零空间给出的就是这个向量方程所有可能的解

点积与对偶性

点积:两个维数相同的向量或两个长度相同的数组,求点积即将相应坐标配对,求出每一对坐标的乘积,然后将结果相加

如果有一系列等距分布于一条直线上的点,然后应用变换,线性变换会保持这些点等距分布在输出空间上,也就是数轴上;如果这些点没有等距分布,那么这个变换就不是线性的。

线性变换完全由它对ij 的变换决定,但这一次的情况下,基向量只落在一个数上,所有我们将它们变换后的位置记录为矩阵的列时,矩阵的每列只是一个单独的数。

无论何时,看到一个二维到一维的线性变换,无论它是如何定义的,空间中会存在唯一的向量v 与之相关,就这一意义而言,应用变换和与向量v 做点积是一样的。这个现象可以体现对偶性,即两种数学事物之间自然而又出乎意料的对应关系。

叉积的标准介绍

方向为右手定则

以线性变换的眼光看叉积

基变换

封装于这个坐标系中的隐含假设:第一个数字表示向右的运动,第二个数字表示向上的运动。

发生在向量与一组数之间的任意一种转化,都被称为一个坐标系。ij 被称为我们这个标准坐标系的基向量

A^(-1)MA 暗示一种数学上的转移作用,中间的矩阵代表一种所见的变换,外侧的两个矩阵代表转移作用,也就是视角上的转化。矩阵成绩仍然代表着同一个变换,只不过是从其他人的角度来看的。

特征向量与特征值

特征向量:拥有特殊性质(留在它们张成的空间里)的向量。每个特征向量都有一个所属的值,称为“特征值”,即衡量特征向量在变换中拉伸或压缩比例的因子。

 

λ=1 时,A-λI 将空间压缩到一条直线上,这意味着存在一个非零向量v ,使得A-λIv=0 ,即vA 的一个特征向量,在变换中停留在它张成的空间里。

二维线性变换不一定有特征向量。比如90度的逆时针旋转,没有特征向量,因为每一个向量都发生了旋转并离开了其张成的空间。

可能会出现只有一个特征值,但是特征向量不止在一条直线上的情况。比如将所有向量拉伸为2倍。

对角矩阵:除了对角元以外其他元素均为0的矩阵。即所有基向量都是特征向量,矩阵的对角元是它们所属的特征值。对角矩阵与自己多次相乘的结果更容易计算,因为对角矩阵仅仅让基向量与某个特征值相乘,所以多次应用矩阵乘法,比如100次,也只是将每个基向量与对应特征值的100次幂相乘。

如果变换有许多特征向量,多到能选出一个张成全空间的集合,那么就能变换坐标系,使得这些特征向量就是基向量。

所得的矩阵代表的是同一个变换,不过是从新基向量所构成的坐标系的角度来看的。用特征向量来完成这件事的意义在于,这个新矩阵必然是对角的,并且对角元为对应的特征值;它所处的坐标系的基向量在变换中只进行了缩放。一组基向量(同样是特征向量)构成的集合被称为一组“特征基”,也非常合理。

并非所有的矩阵都能对角化。比如剪切变换,它的特征向量不够多,不能张成全空间。但如果你能够找到一组特征基,矩阵运算就会变得非常轻松。

抽象向量空间

从某种意义上说,函数实际上只是另一种向量。

线性算子和线性变换意思一样。

线性的严格定义:可加性和成比例

有很多类似向量的不同事物,只要处理的对象集具有合理的数乘和相加的概念,不管是空间中的箭头、一组数、函数的集合,还是其他定义的集合,线性代数中所有关于向量、线性变换和其他的概念都应该适用于它。

类似于向量的事物,比如箭头、一组数、函数等,它们构成的集合被称为“向量空间”。向量的形式并不重要,只要向量相加和数乘的概念遵守以下规则即可。

克莱姆法则

只讨论非零行列式的情况,意味着线性变换后维数依然相同,每一个输入向量有且仅有一个输出向量,且每一个输出向量也仅对应一个输入向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值