【一起学】实时人脸识别项目(7)面部关键点提取

目录

实现方法

face_recognition

 图像载入函数——load_image_file

人脸特征提取函数——face_landmarks

人脸编码函数——face_encodings 

面部相似度比较——face_distance

GPU加速——batch_face_locatio 

面部匹配——compare_faces


实现方法

face_recognition

face_recognition是世界上最简单的人脸识别库了,你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸。

该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在Labled Faces in the world数据集下达到了99.38%准确率。

 它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。

安装:

pip install face_recognition

创建两个存储图片的目录,known_people目录存储已知的几位美国总统的图片,unknown_pictures目录用于存储需要被识别的图片,如下:

从左图中找到右图的相似人脸

输入命令:

face_recognition/known_people//unknown_pictures/

输出结果:

/unknown_pictures/unknown1.jpg,Obama

输出中,识别到的每张脸都单独占一行,输出格式为<图片名称>,<人名>

如果想指定想并行处理图像,则可以指定cpu核数,例如指定4个cpu则可认为是并行处理4倍的图像:

face_recognition --cpu4 /known_people//unknown_pictures/

图像载入函数——load_image_file
load_image_file(file, mode='RGB')

加载一个图像文件到一个numpy array类型的对象上。

参数:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值