【格与代数系统】格与代数系统汇总

【格与代数系统】格与哈斯图

目录

关系

偏序关系

偏序集

可比性

全序集

最值与上下界

上下确界

代数系统

性质

格与代数系统的关系

分配格

有界格

有补格

布尔代数

例1

例2

对偶格

软代数

完备格

稠密性

优软代数

小结


关系

X,Y是两个非空集合, 记X\times Y=\{(x,y)|x\in X,y\in Y\}.R\subseteq X\times Y,则称R是X到Y的一个二元关系,简称关系。若(x,y)\in R,记xRy

R\subseteq X\times X时,称RX上的一个关系。

偏序关系

RX上的一个关系,若R满足:

(1)自反性:对任意的 $x\in X$,有$(x,x)\in R$

(2)反对称性:若$(x,y)\in R,(y,x)\in R$,则$x=y$

(3)传递性:若$(x,y)\in R,(y,z)\in R$, 则$(x,z)\in R$

则称$R$ 是$X$上的一个偏序关系

偏序关系:自反性+反对称性+传递性

例:\left \{ {8,4,2,1} \right \}中,小于或等于关系,即满足偏序关系,可以有关系矩阵

偏序集

一般用符号\leq 来表示偏序关系,从而,称$(X,\leqslant)$是一个偏序集。

偏序关系\rightarrow偏序集

可比性

$(X,\leqslant)$是一个偏序集,对任意$x, y\in X$,若$x\leqslant y$$y\leqslant x$至少有一个成立,则称$x$$y$可比;反之,若$x\leqslant y$$y\leqslant x$都不成立,则称$x$$y$不可比

$x\leqslant y$$x\neq y$,则记x< y

全序集

若对任意的$x, y\in X$,都有$x$y可比,则称\leq是一个线性序或全序并称$(X,\leqslant)$是一个线性序集全序集

一个线性序集也称为一条链,偏序集的线性序的子集 (在原偏序关系下) 构成一条链。

偏序集+可比性\rightarrow全序集

最值与上下界

$(X,\leqslant)$是一个偏序集.

若存在$u\in X$,使得对任意的$x\in X$,有$x\leqslant u$,则称$u$$(X,\leqslant)$最大元

若存在$l\in X$, 使得对任意的$x\in X$, 有$l\leqslant x$,则称l$(X,\leqslant)$最小元

$(X,\leqslant)$是一个偏序集,$A\subseteq X$.

若存在$\alpha\in X$,对任意的x\in A, 有$x\leqslant \alpha, $则称\alpha$A$的一个上界

若存在$\beta\in X$,对任意的$x\in A$,有$\beta\leqslant x$,则称\beta$A$的一个下界

上下确界

$(X,\leqslant)$是一个偏序集,$A\subseteq X$.

\alpha$A$的一个上界,且对$A$的任意上界$u$,都有 $\alpha\leqslant u$,则称\alpha$A$的最小上界或上确界,记$\alpha=\sup\{x|x\in A\};$

\beta$A$ 的一个下界,且对$A$的任意下界l,都有\beta \geq l, 则称$\beta$$A$的最大下界或下确界,记$\beta=\inf\{x|x\in A\}$

$A$的上、下确界存在,则记:

$ \bigvee A=\bigvee\{x|x\in A\}=\sup A=\sup\{x|x\in A\}, $

$ \bigwedge A=\bigwedge\{x|x\in A\}=\operatorname*{inf}A=\operatorname*{inf}\{x|x\in A\}. $

(X,\leqslant)是一个偏序集,若对任意$x,y\in X$$\{x,y\}$的上、下确界都存在,则称$(X,\leqslant)$是一个,用(L,\leqslant)表示格。

偏序关系\rightarrow偏序集

偏序集+上下确界\rightarrow

代数系统

(L,\leqslant)是格,则由格的定义,对任意$a, b\in L$sup\{ a, b\}$\inf\{a,b\}$都存在,进而在$L$上令

\begin{aligned} \bigvee:L\times L& \rightarrow L, \\ \left(a,b\right)& \longmapsto a\bigvee b=\sup\{a,b\}, \\ \bigwedge:L\times L& \rightarrow L, \\ \left(a,b\right)& \longmapsto a\bigwedge b=\inf\{a,b\}, \end{aligned}

 L 与其这两个二元运算$\bigvee,\bigwedge$构成代数系统 (L,\bigvee,\bigwedge), 称为由格$(L,\leqslant)$诱导的代数系统。

格+两个二元运算(取上下确界)\rightarrow代数系统

性质

(L,\bigvee,\bigwedge)是由格$(L,\leqslant)$诱导的代数系统,则其上的两个二元运算满足:

幂等律:$a\bigvee a=a,a\bigwedge a=a$

交换律:a\bigvee b=b\bigvee a,a\bigwedge b=b\bigwedge a

结合律:(a\bigvee b)\bigvee c=a\bigvee(b\bigvee c),(a\bigwedge b)\bigwedge c=a\bigwedge(b\bigwedge c)

吸收律:a\bigvee(a\bigwedge b)=a,a\bigwedge(a\bigvee b)=a

若代数系统(L,\bigvee,\bigwedge)中的两个二元运算满足交换律、结合律、吸收律,则存在一个格$(L,\leqslant)$,使得其诱导的代数系统就是(L,\bigvee,\bigwedge)

格与代数系统的关系

$(L,\leqslant)$与其诱导的代数系统(L,\bigvee,\bigwedge)可以看作格的两种表现形式。

格有两种等价的定义,根据需要采用:

1、一个偏序集,若其中任意两个元素的上、下确界都存在,则称之为偏序格;

2、一个具有两个二元运算的代数系统,若其上的两个运算满足交换律、结合律、吸收律,则称之为代数格。

分配格

(L,\bigvee,\bigwedge)是格,若其上的两个二元运算满足分配律,即对任意的a,b,c\in L

a\bigwedge(b\bigvee c)=(a\bigwedge b)\bigvee(a\bigwedge c)\\\\a\bigvee(b\bigwedge c)=(a\bigvee b)\bigwedge(a\bigvee c)

则称(L,\bigvee,\bigwedge)是分配格。

格+分配律\rightarrow分配格

有界格

(L,\leq )是格,若L既有最大元,又有最小元,则称(L,\leq )是有界格。

有界:上、下界均存在

(L,\leq )是有界格,1和0分别表示其最大元和最小元,则对任意a\in L,有0\leq a \leq 1,且

a\bigvee1=1,\quad a\bigwedge1=a,\quad a\bigvee0=a,\quad a\bigwedge0=0

有补格

(L,\leq )是有界格,1和0分别表示其最大元和最小元,设a\in L,若存在b\in L,使得

a\bigvee b=1,\quad a\bigwedge b=0

则称b是a的一个补元。若L中的每一个元素都有补元,则称(L,\leq )是有补格。

当补元唯一时,用a^{c}来表示a的补元。

布尔代数

(L,\leq )既是有补格,又是分配格,则称(L,\leq )是布尔代数或布尔格。

有补+分配\rightarrow布尔代数

(L,\leq )是布尔代数,则L中的每一个元素都有唯一的补元。

布尔代数中有三种运算,二元运算\bigvee,\bigwedge和一元运算——补运算,因此布尔代数可记为(L,\bigvee,\bigwedge,^{\mathrm{c}})

布尔代数(L,\bigvee,\bigwedge,^{\mathrm{c}})上的运算满足:

1.复原律:(a^{\mathrm{c}})^{\mathrm{c}}=a

2.补余律:a\bigvee a^{\mathrm{c}}=1,a\bigwedge a^{\mathrm{c}}=0

3.对偶律:(a\bigvee b)^\mathrm{c}=a^\mathrm{c}\bigwedge b^\mathrm{c},(a\bigwedge b)^\mathrm{c}=a^\mathrm{c}\bigvee b^\mathrm{c}

例1

由格(\{0,1\},\leqslant)诱导的代数系统 (\{0,1\},V,\wedge),其中

$ \begin{aligned}a\bigvee b=\max\{a,b\},\quad a\bigwedge b=\min\{a,b\}.\end{aligned} $

设任意的$a\in\{0,1\}$, 定义$a^c=1-a$, 则代数系统(\{0,1\},\bigvee,\bigwedge,\quad^c)是布尔代数.

例2

代数系统$(\mathcal{P}(X),\bigcup,\bigcap,^c)$是布尔代数,且可视其为由格 (\mathcal{P}(X),\subseteq)诱导的代数系统,其中

$ A\bigcup B=\sup\{A,B\},\quad A\bigcap B=\inf\{A,B\}. $

对偶格

$(L,\leqslant)$是格,在其上定义一种补运算,即对任意的$a\in L$, 存在唯一的$a^\mathrm{c}$与之对应.若满足

1.复原律 $(a^{\mathrm{c}})^{\mathrm{c}}=a$
2.对偶律$(a\bigvee b)^{\mathrm{c}}=a^{\mathrm{c}}\bigwedge b^{\mathrm{c}},(a\bigwedge b)^{\mathrm{c}}=a^{\mathrm{c}}\bigvee b^{\mathrm{c}}$,

则称$(L,\leqslant)$是对偶格。

软代数

$(L,\leqslant)$既是有界格,又是对偶格、分配格,则称$(L,\leqslant)$诱导的代数系统(L,\bigvee,\bigwedge,^{\mathrm{c}})是软代数。

布尔代数一定是软代数

完备格

$(L,\leqslant)$是格,若L的任意非空子集的上、下确界都存在,则称$(L,\leqslant)$是完全格或完备格。

完备格一定是有界格

$(L,\leqslant)$是完备格,A,B \subseteq L,则有

1.\bigvee(A\bigcup B)=(\bigvee A)\bigvee(\bigvee B)

2.\bigwedge(A\bigcup B)=(\bigwedge A)\bigwedge(\bigwedge B)

无限分配律:

完备格$(L,\leqslant)$,代数系统(L,\bigvee,\bigwedge),若两个运算满足:

\begin{aligned}a\wedge(\bigvee_{i\in I}b_i)&=\bigvee_{i\in I}(a\wedge b_i)\\a\vee(\bigwedge_{i\in I}b_i)&=\bigwedge_{i\in I}(a\bigvee b_i)\end{aligned}

则称$(L,\leqslant)$满足无限分配律

稠密性

$(L,\leqslant)$是格,若对任意$a,b\in L,a<b$, 都存在$c\in L$,使$a<c<b$,则称$(L,\leqslant)$是稠密的。

任意两元间仍有一元

优软代数

$(L,\leqslant)$是稠密的对偶格,且满足完全分配律,则$(L,\leqslant)$诱导的代数系统 (L,\bigvee,\bigwedge,^{\mathrm{c}})称为优软代数。

稠密+对偶+完全分配律\rightarrow优软代数

优软代数一定是软代数

小结

偏序关系:自反性+反对称性+传递性

偏序集:满足偏序关系

可比性: $x\leqslant y$$y\leqslant x$至少有一个成立

全序集:偏序集+可比性

格:偏序集+上下确界

代数系统:格+两个二元运算(取上下确界)

分配格:满足分配律

有界格:有最大、最小元

有补格:每个元素都有补元

布尔代数:有补+分配

对偶格:复原律+对偶律

软代数:有界+对偶+分配

完备格:非空子集都有上下确界

稠密性:任意两元间仍有一元

优软代数:对偶+稠密+完全+无限分配律

布尔代数每一元素都有唯一补元

布尔代数一定是软代数

优软代数一定是软代数

完备格一定是有界格

一般若一个线性序集中的元素多于两个,一定不是有补格。

代数系统([0,1],\bigvee,\bigwedge,\quad^c)是优软代数

代数系统(\mathcal{F}(X),\bigvee,\bigwedge,\quad^c)是优软代数

  • 65
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值