测地线
设 S : r ( u , v ) S:r(u,v) S:r(u,v)是曲面, γ ( s ) = r ( u ( s ) , v ( s ) ) \gamma(s)=r(u(s),v(s)) γ(s)=r(u(s),v(s))是 S S S上的一条弧长参数化曲线。称 γ ( s ) \gamma(s) γ(s)是测地线,如果 k g = 0 k_g=0 kg=0。显然这等价于单位切向量 γ ˙ \dot{\gamma} γ˙沿 γ ( s ) \gamma(s) γ(s)平行。显然曲面上的直线一定是测地线。
由协变导数在自然标架下的公式可知,
γ
(
s
)
\gamma(s)
γ(s)是测地线当且仅当
{
d
2
u
1
d
s
2
+
Γ
α
β
1
d
u
α
d
s
d
u
β
d
s
=
0
d
2
u
2
d
s
2
+
Γ
α
β
2
d
u
α
d
s
d
u
β
d
s
=
0
\begin{cases}\dfrac{d^2u^1}{ds^2}+\Gamma_{\alpha\beta}^1\dfrac{du^\alpha}{ds}\dfrac{du^\beta}{ds}=0\\\\\dfrac{d^2u^2}{ds^2}+\Gamma_{\alpha\beta}^2\dfrac{du^\alpha}{ds}\dfrac{du^\beta}{ds}=0&\end{cases}
⎩
⎨
⎧ds2d2u1+Γαβ1dsduαdsduβ=0ds2d2u2+Γαβ2dsduαdsduβ=0
这是关于
u
1
(
s
)
,
u
2
(
s
)
u^1(s),u^2(s)
u1(s),u2(s)的拟线性常微分方程组,引入新变量
v
7
=
d
2
u
r
d
s
2
v^{7}=\frac{d^2u^r}{ds^2}
v7=ds2d2ur可将其化为一阶常微分方程组。从而测地线具有存在唯一性。
测地线的局部存在唯一性
设 S : r ( u , v ) S:r(u,v) S:r(u,v)是曲面,任给 P ∈ S P\in S P∈S 和单位切向量 v ∈ T P S , ∣ v ∣ = 1 {\boldsymbol{v}\in T_PS,|\boldsymbol{v}|=1} v∈TPS,∣v∣=1,总存在唯一测地线 γ ( s ) \gamma ( s) γ(s), s ∈ ( − ε , ε ) s\in ( - \varepsilon , \varepsilon ) s∈(−ε,ε)使得 γ ( 0 ) = P \gamma(0)=P γ(0)=P且 γ ˙ ( 0 ) = v \dot{\gamma}(0)=v γ˙(0)=v。
只需再说明上述方程组的解仍是弧长参数化曲线即可。事实上,设
γ ( s ) = r ( u ( s ) , v ( s ) ) \gamma(s)=r(u(s),v(s)) γ(s)=r(u(s),v(s))是上述方程的解,则 γ ˙ \dot{\gamma} γ˙沿 γ ( s ) \gamma(s) γ(s)平行。由于平行不改变向量的长度,所以 ∣ γ ˙ ∣ ≡ ∣ γ ˙ ( 0 ) ∣ = ∣ v ∣ = 1 |\dot{\gamma}|\equiv|\dot{\gamma}(0)|=|v|=1 ∣γ˙∣≡∣γ˙(0)∣=∣v∣=1。这说明 γ ( s ) \gamma(s) γ(s)是弧长参数化曲线。
等距变换保持测地线
设曲面有参数化表示
S
:
r
(
u
,
v
)
,
S
~
:
r
~
(
u
~
,
v
~
)
S:r(u,v),\tilde{S}:\tilde{r}(\tilde{u},\tilde{v})
S:r(u,v),S~:r~(u~,v~),设
σ
:
D
→
D
~
\sigma:D\to\tilde{D}
σ:D→D~使得
σ
(
u
,
v
)
=
(
u
~
,
v
~
)
\sigma(u,v)=(\tilde{u},\tilde{v})
σ(u,v)=(u~,v~)是等距变换。设
γ
(
s
)
=
r
(
u
(
s
)
,
v
(
s
)
)
\gamma(s)=r(u(s),v(s))
γ(s)=r(u(s),v(s))是
S
S
S上的测地线,则
γ
~
(
s
)
=
σ
∘
γ
(
s
)
\tilde{\gamma}(s)=\sigma\circ\gamma(s)
γ~(s)=σ∘γ(s)是
S
~
\tilde{S}
S~上的测地线。
等距变换保持测地曲率,从而保持测地线。