测地线及其局部存在唯一性

测地线

S : r ( u , v ) S:r(u,v) S:r(u,v)是曲面, γ ( s ) = r ( u ( s ) , v ( s ) ) \gamma(s)=r(u(s),v(s)) γ(s)=r(u(s),v(s)) S S S上的一条弧长参数化曲线。称 γ ( s ) \gamma(s) γ(s)是测地线,如果 k g = 0 k_g=0 kg=0。显然这等价于单位切向量 γ ˙ \dot{\gamma} γ˙沿 γ ( s ) \gamma(s) γ(s)平行。显然曲面上的直线一定是测地线。

由协变导数在自然标架下的公式可知, γ ( s ) \gamma(s) γ(s)是测地线当且仅当
{ d 2 u 1 d s 2 + Γ α β 1 d u α d s d u β d s = 0 d 2 u 2 d s 2 + Γ α β 2 d u α d s d u β d s = 0 \begin{cases}\dfrac{d^2u^1}{ds^2}+\Gamma_{\alpha\beta}^1\dfrac{du^\alpha}{ds}\dfrac{du^\beta}{ds}=0\\\\\dfrac{d^2u^2}{ds^2}+\Gamma_{\alpha\beta}^2\dfrac{du^\alpha}{ds}\dfrac{du^\beta}{ds}=0&\end{cases} ds2d2u1+Γαβ1dsduαdsduβ=0ds2d2u2+Γαβ2dsduαdsduβ=0
这是关于 u 1 ( s ) , u 2 ( s ) u^1(s),u^2(s) u1(s),u2(s)的拟线性常微分方程组,引入新变量 v 7 = d 2 u r d s 2 v^{7}=\frac{d^2u^r}{ds^2} v7=ds2d2ur可将其化为一阶常微分方程组。从而测地线具有存在唯一性。



测地线的局部存在唯一性

S : r ( u , v ) S:r(u,v) S:r(u,v)是曲面,任给 P ∈ S P\in S PS 和单位切向量 v ∈ T P S , ∣ v ∣ = 1 {\boldsymbol{v}\in T_PS,|\boldsymbol{v}|=1} vTPS,v=1,总存在唯一测地线 γ ( s ) \gamma ( s) γ(s), s ∈ ( − ε , ε ) s\in ( - \varepsilon , \varepsilon ) s(ε,ε)使得 γ ( 0 ) = P \gamma(0)=P γ(0)=P γ ˙ ( 0 ) = v \dot{\gamma}(0)=v γ˙(0)=v

只需再说明上述方程组的解仍是弧长参数化曲线即可。事实上,设
γ ( s ) = r ( u ( s ) , v ( s ) ) \gamma(s)=r(u(s),v(s)) γ(s)=r(u(s),v(s))是上述方程的解,则 γ ˙ \dot{\gamma} γ˙沿 γ ( s ) \gamma(s) γ(s)平行。由于平行不改变向量的长度,所以 ∣ γ ˙ ∣ ≡ ∣ γ ˙ ( 0 ) ∣ = ∣ v ∣ = 1 |\dot{\gamma}|\equiv|\dot{\gamma}(0)|=|v|=1 γ˙γ˙(0)=v=1。这说明 γ ( s ) \gamma(s) γ(s)是弧长参数化曲线。



等距变换保持测地线

设曲面有参数化表示 S : r ( u , v ) , S ~ : r ~ ( u ~ , v ~ ) S:r(u,v),\tilde{S}:\tilde{r}(\tilde{u},\tilde{v}) S:r(u,v),S~:r~(u~,v~),设 σ : D → D ~ \sigma:D\to\tilde{D} σ:DD~使得
σ ( u , v ) = ( u ~ , v ~ ) \sigma(u,v)=(\tilde{u},\tilde{v}) σ(u,v)=(u~,v~)是等距变换。设 γ ( s ) = r ( u ( s ) , v ( s ) ) \gamma(s)=r(u(s),v(s)) γ(s)=r(u(s),v(s)) S S S上的测地线,则 γ ~ ( s ) = σ ∘ γ ( s ) \tilde{\gamma}(s)=\sigma\circ\gamma(s) γ~(s)=σγ(s) S ~ \tilde{S} S~上的测地线。

等距变换保持测地曲率,从而保持测地线。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

F_D_Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值