YOLOv11小白的进击之路(六)创新YOLO的iou及损失函数时的源码分析

iou或者说是损失函数的修改经常作为论文的创新点之一,那这篇文章就总结分析了在对YOLO11进行损失函数创新时需要关注的源代码新的一年祝大家论文与财都发发发

总的来看需要关注三个函数,分别位于YOLO庞大源码的不同文件,下面逐一分析:

bbox_iou函数

bbox_iou函数位于/ultralytics-main/ultralytics/utils/metrics.py这个函数的目的是计算两个边界框(box)之间的IoU(Intersection over Union)或其变体(GIoU、DIoU、CIoU)

def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
  • box1 表示单个边界框,box2 表示多个边界框。
  • xywh=True 表示边界框的输入格式是 (x, y, w, h),即中点坐标和宽高,否则将视作 (x1, y1, x2, y2) 格式。
  • GIoUDIoUCIoU 分别对应不同的IoU改进算法。
  • eps 是一个很小的数,用来避免除以零等数值问题。

根据格式确定坐标

    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
        w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
  • 如果 xywh=True,则将中心点 (x, y, w, h) 转为左上角和右下角 (x1, y1, x2, y2)
  • 转换方式:
    • x1 = x - w/2x2 = x + w/2
    • y1 = y - h/2y2 = y + h/2
  • 如果不是 (x, y, w, h) 格式,就直接从 (x1, y1, x2, y2) 中拆分。

计算相交面积 (Intersection)

inter = (  
    (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) *  
    (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp_(0)  
)
  • b1_x2.minimum(b2_x2) 相当于取两者右边界的最小值作为相交区域的右边界;b1_x1.maximum(b2_x1) 取两者左边界的最大值作为相交区域的左边界。二者相减得到相交区域的宽度。
  • 同理,对 y 方向做类似操作,计算相交区域的高度。
  • clamp_(0) 会把负值变成 0,代表如果没有重叠(高度或宽度小于 0)则相交面积为 0。

计算联合面积 (Union) 与 IoU

union = w1 * h1 + w2 * h2 - inter + eps  
iou = inter / union
  • 联合面积 = 两个框面积之和 - 相交面积。
  • 计算好的 union 就能用来得到基本的 iou = inter / union
  • + eps 防止分母为 0。

GIoU / DIoU / CIoU(扩展)

如果设置了 GIoU=TrueDIoU=True 或 CIoU=True,则会进行更复杂的计算:

if CIoU or DIoU or GIoU:  
    cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # 包覆两个框的最小外接框的宽度  
    ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # 同理,高度
  • 将两个框最小能包住它们的“外接矩形”称为“convex box”,用它的宽和高来帮助我们改进IoU的计算。
GIoU
  • c_area = cw * ch 表示两个框的外接矩形面积。
  • GIoU 在 IoU 基础上还会根据这个“外接矩形”对空白区域进行惩罚,从而在没有交集时训练效果更好。
DIoU
if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw.pow(2) + ch.pow(2) + eps  # convex diagonal squared
            rho2 = (
                (b2_x1 + b2_x2 - b1_x1 - b1_x2).pow(2) + (b2_y1 + b2_y2 - b1_y1 - b1_y2).pow(2)
            ) / 4  # center dist**2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            return iou - rho2 / c2  # DIoU
  • DloU还会计算两个框中心点之间的距离,与外接矩形对角线距离比较,用距离来惩罚。
CIoU
  • 在 DIoU 的基础上再加上长宽比等因素,进一步提高回归精度。

最终会返回不同公式下的结果,比如:

  • return iou - (rho2 / c2) 对应 DIoU
  • return iou - (c_area - union) / c_area 对应 GIoU
  • return iou - (rho2 / c2 + v * alpha) 对应 CIoU

简而言之,这个函数的流程是:

  1. 将输入框转换为统一的 (x1, y1, x2, y2) 形式;
  2. 计算相交区域(Intersection);
  3. 计算并返回基本 IoU 或对应改进版本(GIoU、DIoU、CIoU),这些算法通过对距离、外接矩形或长宽比进行额外惩罚,解决 IoU 在一些特殊场景下对回归不敏感的问题。

BboxLoss函数

第二个需要关注的函数是位于/ultralytics-main/ultralytics/utils/loss.py路径下的的BboxLoss函数,主要作用就是先算 IoU 损失做粗定位,再用分布回归进行细定位,二者加权求和后再与其他损失(如分类损失)合并,帮助 YOLO 进行更精准的检测和定位。

类初始化 (init)

class BboxLoss(nn.Module):  
    def __init__(self, reg_max=16):  
        super().__init__()  
        self.dfl_loss = DFLoss(reg_max) if reg_max > 1 else None
  1. reg_max 用于分布回归 (Distribution Focal Loss, DFL) 的参数控制,当 reg_max > 1 时,就会实例化 DFLoss;否则不启用 DFL。
  2. self.dfl_loss 是一个可选的分布回归损失,用于更精细地回归边界框

forward 函数

def forward(self,   
            pred_dist,   
            pred_bboxes,   
            anchor_points,   
            target_bboxes,   
            target_scores,   
            target_scores_sum,   
            fg_mask):  

这个方法接收以下主要输入:

  • pred_dist:分布式预测结果(若启用 DFL,会用来计算分布回归损失)。
  • pred_bboxes:模型预测的边界框坐标,一般是 (x1, y1, x2, y2) 格式。
  • anchor_points:对应特征点或锚框坐标信息,用来辅助计算真值的分布回归标签。
  • target_bboxes:真实的边界框坐标 (Ground Truth)。
  • target_scores:真实样本的分类得分(目标的置信度),或称“目标存在”分数。
  • target_scores_sum:对所有前景框的 target_scores 求和,用于做损失归一化。
  • fg_mask:前景掩码,表示哪些位置是真正需要回归的正样本(Foreground)。

IoU Loss 部分

weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)  
iou = bbox_iou(  
    pred_bboxes[fg_mask],   
    target_bboxes[fg_mask],   
    xywh=False,   
    CIoU=True  
)  
loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum
  1. 计算权重 (weight)

  • target_scores.sum(-1)[fg_mask]:对前景区域的目标分数做叠加,并取前景对应的值。
  • unsqueeze(-1) 是为了在最后一维上加一个新维度,以便与 IoU 逐元素相乘。
  1. 计算 IoU

  • 调用咱们前面分析过的 bbox_iou 函数,这里指定 xywh=False 表示坐标是 (x1, y1, x2, y2)。
  • 使用 CIoU=True,即计算 Complete IoU,对距离和长宽比等额外因素也有一定惩罚。
  1. 组合得到 IoU 损失

  • (1.0 - iou) 作为回归损失的基本形式,IoU 越大,损失越小。
  • * weight 对每个前景实例进行加权。
  • 最后除以 target_scores_sum 做归一化,避免不同批次间正样本数量差异过大。

DFL (Distribution Focal Loss) 部分

if self.dfl_loss:  
    target_ltrb = bbox2dist(anchor_points, target_bboxes, self.dfl_loss.reg_max - 1)  
    loss_dfl = self.dfl_loss(  
        pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max),   
        target_ltrb[fg_mask]  
    ) * weight  
    loss_dfl = loss_dfl.sum() / target_scores_sum  
else:  
    loss_dfl = torch.tensor(0.0).to(pred_dist.device)

1.判断是否启用 DFL

  • 若 self.dfl_loss 不为空,则进入 DFL 分布回归损失的计算;否则直接 loss_dfl = 0.0

2.bbox2dist 函数

  • 就是一个辅助函数,用来把 (anchor_points, target_bboxes) 转换成“分布形式”的真值,用于和 pred_dist(预测的分布)对齐。
  • DFL 会把单一数值(比如 x 的偏移量)表示成一个离散分布,然后用分类方式进行回归,细化了定位精度。

3.计算 DFLoss

  • pred_dist[fg_mask].view(-1, self.dfl_loss.reg_max):把预测的分布展开到合适维度,与真值分布比较。
  • 用 target_ltrb[fg_mask] 做标签,对应四个 (left, top, right, bottom) 或类似的分布表示。
  • 同样乘以 weight 并除以 target_scores_sum,让损失与 IoU Loss 在同一尺度上进行加权和归一化。

最终返回

return loss_iou, loss_dfl
  • 返回 IoU 损失和 DFL 损失,训练时通常会将这两个损失与分类损失等合并,形成完整的损失函数进行反向传播。

整体逻辑是先算 IoU 损失做粗定位,再用分布回归进行细定位,二者加权求和后再与其他损失(如分类损失)合并,帮助 YOLO 进行更精准的检测和定位。

iou_calculation函数

最后咱们需要关注的是位于/ultralytics-main/ultralytics/utils/tal.py路径下的iou_calculation函数,主要作用是进行水平边界框的 IoU计算。

def iou_calculation(self, gt_bboxes, pd_bboxes):  
    """IoU calculation for horizontal bounding boxes."""  
    return bbox_iou(gt_bboxes, pd_bboxes, xywh=False, CIoU=True).squeeze(-1).clamp_(0)

1.调用 bbox_iou 函数

  • 这里把 xywh=False,说明输入的 gt_bboxes 和 pd_bboxes 均是 (x1, y1, x2, y2) 格式。
  • CIoU=True 表示计算的是 Complete IoU,会额外考虑中心点距离及长宽比的惩罚。

2.squeeze(-1)

  • bbox_iou 可能返回形状为 [N, 1] 的张量,这里通过 squeeze(-1) 去除最后一维,使结果变为 [N]
  • clamp_(0)将结果张量中小于 0 的值重置为 0,保证 IoU 的数值不为负数。

最后,得到的就是对于一批水平(轴对齐)边界框的 CIoU 值向量,每个元素对应一对 gt_bbox 和 pd_bbox 的 IoU 结果

至此,我们就完成了对YOLO中iou计算和损失函数的源码分析,YOLOv11小白的进击之路系列持续更新中...

最后

欢迎一起交流探讨 ~ 砥砺奋进,共赴山海!

文章推荐YOLOv11小白的进击之路(二)从YOLO类-DetectionModel类出发看YOLO代码运行逻辑..._if isinstance(m, detect,afpn4head): # includes all-CSDN博客

YOLOv11小白的进击之路(五)BaseModel类下_predict_once函数源码分析-CSDN博客 

YOLOv11小白的进击之路(七)训练输出日志解读以及训练OOM报错解决办法-CSDN博客

<think>好的,我现在要帮助用户查找YOLOv11IoU的计算方法或实现方式。首先,我需要确认YOLOv11是否是一个正式发布的版本,或者可能是一个笔误。因为根据我现有的知识,YOLO系列的最新版本是到YOLOv8,YOLOv11可能不存在,或者可能是某些社区或个人的改进版本。不过,用户引用的参考内容里有提到YOLOv11,特别是引用[3]中的“YOLOv11小白的进击之路(创新YOLOiou损失函数源码分析”,这可能意味着用户指的是某个特定修改的版本,或者是某个教程中的命名。 接下来,我需要分析用户提供的引用内容。引用[1]和[2]讨论了IoU的不同计算方法,如EIOU、alpha IOU、SIoU,以及如何在YOLOv5中实现这些方法。引用[3]提到了YOLOv11创新iou损失函数源码分析,但链接显示的是YOLO类-DetectionModel类的运行逻辑。引用[4]则对比了YOLOv3和Faster R-CNN在计算IoU的差异,指出YOLO可能不考虑中心点坐标,而只考虑宽高。 用户的问题明确指向YOLOv11IoU实现,但由于YOLOv11并非官方版本,我需要假设这可能是一个基于YOLOv5或其他版本的改进模型。根据引用[3],可能YOLOv11损失函数IoU计算上有创新,但需要具体查看其源码。用户可能希望了解该版本中使用的IoU类型(如标准IoU、CIoU、DIoU等)及其实现细节。 由于直接引用中没有YOLOv11的具体实现,我需要基于YOLO系列的一般实现方式推测。通常,YOLOIoU计算在目标检测中用于边界框回归的损失函数,如YOLOv5可能使用CIoU Loss。如果YOLOv11是基于YOLOv5的改进,可能采用了如EIOU、SIoU等更先进的IoU计算方法。例如,引用[2]提到在YOLOv5中更换EIOU的方法,可能YOLOv11默认集成了这些方法。 此外,引用[3]提到源码分析,可能需要查看Detect类或相关的损失函数模块。通常,在YOLO的代码中,IoU计算会在utils/metrics.py或类似的文件中定义,或者在loss.py中实现。例如,YOLOv5的bbox_iou函数负责计算不同IoU变体。 总结,用户可能需要知道YOLOv11中具体使用的IoU类型及其代码位置。由于缺乏官方资料,我需要基于现有YOLO版本的实现和用户提供的引用进行合理推测,并指导用户如何查找源码中的相关部分,例如检查bbox_iou函数或损失类中的实现。同,提醒用户注意YOLOv11可能为社区版本,建议核实来源。</think>### YOLOv11IoU计算方法的解析 根据现有YOLO系列的实现模式及引用资料分析,YOLOv11IoU计算可能继承并改进了YOLOv5的设计,并引入了新的边界框回归损失函数。以下是关键实现逻辑的推测: --- #### 一、核心实现方式 1. **IoU变体选择** YOLOv11可能采用**SIoU(Structural IoU)**或**EIOU(Efficient IoU)**作为默认计算方法,这类改进IoU能更好地处理边界框对齐问题[^2]。其数学定义如下: $$ \text{EIOU} = \text{IoU} - \frac{\rho^2(b_{pred},b_{gt})}{c^2} - \frac{\alpha v}{1-\text{IoU}+v} $$ 其中$c$为最小包围框对角线长度,$v$衡量宽高比一致性[^1]。 2. **代码位置推测** 在YOLO源码中,IoU计算通常位于以下模块: ```python # 文件路径: utils/metrics.py 或 loss.py def bbox_iou(box1, box2, x1y1x2y2=True, SIoU=False, EIoU=False): # 计算交并比及附加惩罚项 ... if SIoU: # 结构相似性计算 theta = np.arctan((box2[..., 3]/box2[..., 2]) - (box1[..., 3]/box1[..., 2])) ... return iou - penalty_factor ``` 3. **损失函数集成** IoU计算直接关联边界框回归损失,YOLOv11可能通过`ComputeLoss`类调用IoU计算: ```python class ComputeLoss: def __init__(self, model): self.iou_method = model.hyp['iou'] # 从超参数读取配置 def __call__(self, pred, targets): iou = bbox_iou(pred, targets, method=self.iou_method) loss = (1.0 - iou).mean() return loss ``` --- #### 二、实现验证步骤 1. **查阅超参数配置** 检查`data/hyps/hyp.scratch.yaml`文件中的`iou`参数,确认是否标注了`eiou`/`siou`等标识[^2]。 2. **跟踪损失函数调用** 在`loss.py`中定位`ComputeLoss`类的`bbox_iou`调用位置,观察是否包含如下分支: ```python if self.iou_type == 'eiou': return calculate_eiou(box1, box2) elif self.iou_type == 'siou': return calculate_siou(box1, box2) ``` 3. **Anchor匹配逻辑** YOLO系列可能沿用**中心点强制对齐策略**(如YOLOv3[^4]),即计算IoU先将预测框与GT框中心对齐,再比较宽高重叠。 --- #### 三、典型代码示例 假设YOLOv11采用EIOU实现,其核心代码可能如下: ```python def bbox_eiou(box1, box2, eps=1e-7): # 转换坐标为(x_center, y_center, width, height) b1_cx, b1_cy = (box1[:, 0] + box1[:, 2])/2, (box1[:, 1] + box1[:, 3])/2 b2_cx, b2_cy = (box2[:, 0] + box2[:, 2])/2, (box2[:, 1] + box2[:, 3])/2 # 计算最小包围框对角线c^2 cw = torch.max(box1[:, 2], box2[:, 2]) - torch.min(box1[:, 0], box2[:, 0]) ch = torch.max(box1[:, 3], box2[:, 3]) - torch.min(box1[:, 1], box2[:, 1]) c2 = cw**2 + ch**2 + eps # 中心点距离ρ^2 rho2 = (b1_cx - b2_cx)**2 + (b1_cy - b2_cy)**2 # 宽高比惩罚项 w1, h1 = box1[:, 2]-box1[:, 0], box1[:, 3]-box1[:, 1] w2, h2 = box2[:, 2]-box2[:, 0], box2[:, 3]-box2[:, 1] v = (4/(math.pi**2)) * torch.pow(torch.atan(w2/h2) - torch.atan(w1/h1), 2) return iou - (rho2/c2 + v**2 / (1 - iou + v + eps)) # EIoU公式[^1] ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值