五连杆VMC

最近在搞这部分的理论,以便后续应用到实践上。文章参考五连杆运动学解算与VMC - 知乎 (zhihu.com)

A、E两转动副由电机驱动。

A、E的转动角度可通过电机编码器测得。

VMC控制任务中主要关注五连杆机构末端C的位置,通常可用直角坐标(x,y)或极坐标表示。

ps:极坐标是是指用角度长度描述位置的坐标系统。

在这个系统中,一个点的位置由两个参数决定:极径(即点到原点的距离)和极角(即从固定方向到连接点与原点的直线之间的角度)。

通过五连杆左右两部分列写 C 点坐标,可得到以下等式:

求解方程组可得到角度 ϕ2 :

其中:

 

ps:

1、

这个公式计算了从点 B 到点 D 在 x 轴方向上的距离的两倍,乘以长度 

2、同理

3、

根据余弦定理

4、

 根据两点间距离公式

通过角度 ϕ2 即可解算出 C 点直角坐标 (x,y):

进而得到极坐标 (L0,ϕ0):

VMC

虚拟模型控制(Virtual Model Control,简称VMC)算法是一种用于机器人,特别是四足机器人运动控制的方法。它通过在控制对象上假设存在虚拟元件如弹簧和阻尼器等,分析控制对象所受的虚拟力,并通过雅可比矩阵建立虚拟力和关节力的映射关系,从而实现对机器人的控制。

这里的全微分被用来描述被用来描述五连杆两个末端四个电机的位置和姿态如何随着关节角度的变化而变化。如果我们有一个机器人的正运动学模型 x=f(q),其中 x 表示末端执行器的位置和姿态,q 表示关节角度,那么我们可以通过对 f 求全微分来得到雅可比矩阵:

即:

雅可比矩阵 J关节速度 q 映射为末端执行器的姿态变化率 x

ps:全微分用于描述多变量函数在一点处的线性变化。对于一个多变量函数,全微分可以告诉我们当输入变量发生微小变化时,函数输出将如何变化。

ps:虚功原理是是指在力学系统中,当系统处于平衡状态时,所有外力所做的虚功之和为零的原则。在本文五连杆中,虚功原理被用来建立关节速度与连杆姿态变化率之间的关系,进而解算出关节电机输出力矩。

但对上文推导出的正运动学模型直接求取雅可比矩阵 J 并不是好办法,因为模型表达式中包含大量平方与三角函数及其嵌套运算,直接调用符号运算工具的求雅可比矩阵函数会得到极其复杂的结果,无法转移到嵌入式平台进行计算,故需要通过其他方法来计算。

根据可知,雅可比矩阵 J 实际描述的是两坐标微分的线性映射关系,因此我们可以通过计算速度映射关系来得到雅可比矩阵。

求导可得:

其中 ϕ1 可由电机编码器测得。

对式

求导可计算 ϕ2:

消去 ϕ3 求得 ϕ2:

其中:

代入进去就能得到ϕ2。

再将 ϕ2 代入式 即可得到:

可以看到,通过这种方法计算的公式不再包含平方与三角函数嵌套运算,三角函数之间的加减乘除也可以利用两角和差公式进一步化简。

 

 

 

 向大佬学习(南方科技大学韭菜的菜)

### 舵机轮腿机器人中的VMC算法实现与研究 虚拟模型控制(Virtual Model Control, VMC)是一种先进的控制策略,在舵机轮腿机器人中得到了广泛应用。该方法通过构建系统的理想动态行为来设计控制器,从而提高系统的稳定性和响应速度。 对于舵机轮腿机器人而言,其运动模式复杂多变,既具备传统移动机器人的特点又融合了仿生学原理。为了使这类机器人能够适应各种地形并完成特定任务,采用VMC可以有效解决非线性动力学带来的挑战[^1]。 具体来说,在实施VMC时通常会经历以下几个方面的工作: #### 动态建模 建立精确的动力学方程是应用VMC的基础。这涉及到对机械结构参数以及外部环境因素进行全面分析,并利用拉格朗日力学或其他适当的方法推导出描述系统行为的微分方程组[^2]。 ```matlab % 建立简单的二自由度摆动臂模型作为例子 syms theta(t) dtheta dt; L = 0.5; % 摆杆长度 (m) g = 9.81; % 重力加速度 (m/s^2) T = L * diff(theta,t)^2 / 2 - g*L*(1-cos(theta)); % 总能量函数 eqn = simplify(diff(T,diff(theta)) - T); % 得到运动方程 disp(eqn); ``` #### 控制器设计 基于所得到的理想化模型,接下来就是根据实际需求设定目标轨迹或期望状态,并据此调整输入信号以驱动物理对象按照预定方式运行。此过程可能涉及PID调节、自适应机制等多种技术手段相结合的方式来进行优化处理[^3]。 #### 实验验证 最后一步是在真实环境中测试理论成果的有效性。通过实验平台收集数据并与仿真结果对比分析,不断修正和完善原有方案直至满足性能指标为止。这一环节至关重要,因为它直接关系到最终产品的实用价值和发展潜力[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值