绘制实验的曲线对比图-yolov8

polt_results.py

import os
import pandas as pd
import numpy as np
import matplotlib.pylab as plt

pwd = os.getcwd()
print(pwd)
files= os.listdir('runs/train') #得到文件夹下的所有文件名称
print(files)
names = files

plt.figure(figsize=(10, 10))

plt.subplot(2, 2, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['   metrics/precision(B)'] = data['   metrics/precision(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['   metrics/precision(B)'] = data['   metrics/precision(B)'].fillna(data['   metrics/precision(B)'].interpolate())
    plt.plot(data['   metrics/precision(B)'], label=i)
plt.xlabel('epoch')
plt.title('precision')
plt.legend()

plt.subplot(2, 2, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['      metrics/recall(B)'] = data['      metrics/recall(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['      metrics/recall(B)'] = data['      metrics/recall(B)'].fillna(data['      metrics/recall(B)'].interpolate())
    plt.plot(data['      metrics/recall(B)'], label=i)
plt.xlabel('epoch')
plt.title('recall')
plt.legend()

plt.subplot(2, 2, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['       metrics/mAP50(B)'] = data['       metrics/mAP50(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['       metrics/mAP50(B)'] = data['       metrics/mAP50(B)'].fillna(data['       metrics/mAP50(B)'].interpolate())
    plt.plot(data['       metrics/mAP50(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5')
plt.legend()

plt.subplot(2, 2, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['    metrics/mAP50-95(B)'] = data['    metrics/mAP50-95(B)'].astype(np.float32).replace(np.inf, np.nan)
    data['    metrics/mAP50-95(B)'] = data['    metrics/mAP50-95(B)'].fillna(data['    metrics/mAP50-95(B)'].interpolate())
    plt.plot(data['    metrics/mAP50-95(B)'], label=i)
plt.xlabel('epoch')
plt.title('mAP_0.5:0.95')
plt.legend()

plt.tight_layout()
plt.savefig('plot_result/metrice_curve.png')
print(f'metrice_curve.png save in {pwd}/metrice_curve.png')

plt.figure(figsize=(15, 10))

plt.subplot(2, 3, 1)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['         train/box_loss'] = data['         train/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['         train/box_loss'] = data['         train/box_loss'].fillna(data['         train/box_loss'].interpolate())
    plt.plot(data['         train/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/box_loss')
plt.legend()

plt.subplot(2, 3, 2)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['         train/dfl_loss'] = data['         train/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['         train/dfl_loss'] = data['         train/dfl_loss'].fillna(data['         train/dfl_loss'].interpolate())
    plt.plot(data['         train/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/dfl_loss')
plt.legend()

plt.subplot(2, 3, 3)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['         train/cls_loss'] = data['         train/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['         train/cls_loss'] = data['         train/cls_loss'].fillna(data['         train/cls_loss'].interpolate())
    plt.plot(data['         train/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('train/cls_loss')
plt.legend()

plt.subplot(2, 3, 4)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['           val/box_loss'] = data['           val/box_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['           val/box_loss'] = data['           val/box_loss'].fillna(data['           val/box_loss'].interpolate())
    plt.plot(data['           val/box_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/box_loss')
plt.legend()

plt.subplot(2, 3, 5)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['           val/dfl_loss'] = data['           val/dfl_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['           val/dfl_loss'] = data['           val/dfl_loss'].fillna(data['           val/dfl_loss'].interpolate())
    plt.plot(data['           val/dfl_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/dfl_loss')
plt.legend()

plt.subplot(2, 3, 6)
for i in names:
    data = pd.read_csv(f'runs/train/{i}/results.csv')
    data['           val/cls_loss'] = data['           val/cls_loss'].astype(np.float32).replace(np.inf, np.nan)
    data['           val/cls_loss'] = data['           val/cls_loss'].fillna(data['           val/cls_loss'].interpolate())
    plt.plot(data['           val/cls_loss'], label=i)
plt.xlabel('epoch')
plt.title('val/cls_loss')
plt.legend()

plt.tight_layout()
plt.savefig('plot_result/loss_curve.png')
print(f'loss_curve.png save in {pwd}/loss_curve.png')

 

tips:需要保存好results.csv文件,plot_results.py文件在ultralytics-main下,需要有多个使用 

### YOLOv8 训练对比实验结果分析 在进行YOLOv8训练的对比实验时,确保每组实验条件的一致性和差异性是至关重要的。对于不同条件下YOLOv8训练的结果分析,可以遵循以下方法: #### 数据集划分与配置 数据集由1000张像组成,其中800张用于训练,200张用于验证[^1]。这种划分有助于评估模型泛化能力的同时保持足够的样本量来优化参数。 #### 配置文件调整 针对不同的实验设置,修改相应的超参数和网络结构可以在`yaml`配置文件中完成。例如改变输入尺寸、锚框大小或是批量处理数量等都会影响最终性能表现。 #### 日志记录与可视化工具 利用日志文件如`results.csv`保存每次迭代后的损失函数值和其他指标变化情况[^3]。通过表展示这些数值随时间的变化趋势能够直观看出各版本间的优劣之处。 ```python import pandas as pd import matplotlib.pyplot as plt def plot_training_results(file_paths): fig, ax = plt.subplots() for file_path in file_paths: df = pd.read_csv(file_path) epochs = range(len(df)) # 绘制精度曲线 ax.plot(epochs, df['precision'], label=f'Precision-{file_path.split("/")[-2]}') ax.set_xlabel('Epochs') ax.set_ylabel('Precision') ax.legend() plt.show() # 假设存在三个不同实验的日志路径列表 plot_training_results(['runs/train/exp/results.csv', 'runs/train/exp2/results.csv', 'runs/train/exp3/results.csv']) ``` 此代码片段展示了如何读取多个CSV格式的日志文件并绘制出各个实验中的精确度变化线。这使得研究人员能更清晰地理解不同设定下模型的表现特征。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@nullptr

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值