yolov8-BIFPN.yaml
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
fusion_mode: bifpn
node_mode: C2f
head_channel: 256
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [4, 1, Conv, [head_channel]] # 10-P3/8
- [6, 1, Conv, [head_channel]] # 11-P4/16
- [9, 1, Conv, [head_channel]] # 12-P5/32
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13 P5->P4
- [[-1, 11], 1, Fusion, [fusion_mode]] # 14
- [-1, 3, node_mode, [head_channel]] # 15-P4/16
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 16 P4->P3
- [[-1, 10], 1, Fusion, [fusion_mode]] # 17
- [-1, 3, node_mode, [head_channel]] # 18-P3/8
- [2, 1, Conv, [head_channel, 3, 2]] # 19 P2->P3
- [[-1, 10, 18], 1, Fusion, [fusion_mode]] # 20
- [-1, 3, node_mode, [head_channel]] # 21-P3/8
- [-1, 1, Conv, [head_channel, 3, 2]] # 22 P3->P4
- [[-1, 11, 15], 1, Fusion, [fusion_mode]] # 23
- [-1, 3, node_mode, [head_channel]] # 24-P4/16
- [-1, 1, Conv, [head_channel, 3, 2]] # 25 P4->P5
- [[-1, 12], 1, Fusion, [fusion_mode]] # 26
- [-1, 3, node_mode, [head_channel]] # 27-P5/32
- [[21, 24, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)