yolov8-BIFPN配置文件

 yolov8-BIFPN.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
fusion_mode: bifpn
node_mode: C2f
head_channel: 256

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [4, 1, Conv, [head_channel]]  # 10-P3/8
  - [6, 1, Conv, [head_channel]]  # 11-P4/16
  - [9, 1, Conv, [head_channel]]  # 12-P5/32

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13 P5->P4
  - [[-1, 11], 1, Fusion, [fusion_mode]] # 14
  - [-1, 3, node_mode, [head_channel]] # 15-P4/16
  
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 16 P4->P3
  - [[-1, 10], 1, Fusion, [fusion_mode]] # 17
  - [-1, 3, node_mode, [head_channel]] # 18-P3/8

  - [2, 1, Conv, [head_channel, 3, 2]] # 19 P2->P3
  - [[-1, 10, 18], 1, Fusion, [fusion_mode]] # 20
  - [-1, 3, node_mode, [head_channel]] # 21-P3/8

  - [-1, 1, Conv, [head_channel, 3, 2]] # 22 P3->P4
  - [[-1, 11, 15], 1, Fusion, [fusion_mode]] # 23
  - [-1, 3, node_mode, [head_channel]] # 24-P4/16

  - [-1, 1, Conv, [head_channel, 3, 2]] # 25 P4->P5
  - [[-1, 12], 1, Fusion, [fusion_mode]] # 26
  - [-1, 3, node_mode, [head_channel]] # 27-P5/32

  - [[21, 24, 27], 1, Detect, [nc]]  # Detect(P3, P4, P5)

### YOLOv8 中改进 BiFPN 结构的方法 #### 修改配置文件 为了在YOLOv8中集成BiFPN结构,需要调整模型的配置文件。具体来说,复制`ultralytics/cfg/models/v8/yolov8.yaml`下的`yolov8.yaml`文件至同一级别的新目录`my_v8`内,并重命名为`yolov8-bifpn.yaml`[^4]。 在此新的配置文件中,应引入跳级连接以及加权特征融合机制来构建完整的BiFPN架构。这涉及到对原有网络层定义做出相应改动,确保能够支持双向(自底向上和自顶向下)的信息传递路径[^3]。 ```yaml # 示例:部分修改后的 yolov8-bifpn.yaml 文件片段 backbone: - [focus, [64], [[0]]] ... neck: # 新增 neck 部分用于实现 BIFPN - [bifpn, [256], [[-1, ...]]] # 这里省略了一些细节参数设置 ... head: - [detect, [...]] ``` #### 创建模块代码 除了更新配置外,还需编写具体的Python类或函数以实际搭建起BiFPN组件。通常是在项目源码树中的适当位置新增一个`.py`文件作为此功能模块入口点。 该模块负责处理多尺度输入张量间的交互操作,比如通过卷积运算完成不同分辨率下特征图之间的转换工作;同时还要考虑权重分配策略以便更好地平衡各分支贡献度。 ```python from torch import nn import torch.nn.functional as F class BiFPN(nn.Module): """Bidirectional Feature Pyramid Network""" def __init__(self, num_channels=256, epsilon=1e-4): super(BiFPN, self).__init__() # 初始化必要的子模块... def forward(self, inputs): """ Args: inputs (list[Tensor]): Input feature maps at different levels. Returns: list[Tensor]: Processed outputs after applying bidirectional connections. """ # 实现前向传播逻辑... pass ``` #### 替换任务执行脚本 最后一步是要让整个训练流程识别并调用上述定制化部件。这意味着要编辑像`tasks.py`这样的核心控制程序,使得其能够在初始化阶段加载指定版本的检测器实例——即带有增强型颈部设计的新版YOLOv8模型[^1]。 这样做不仅有助于验证所做更改的有效性,而且也为后续进一步优化提供了便利条件。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@nullptr

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值