若尔当(约当/约旦)标准型的求解方法:
方法一:初等变换法
例:求矩阵 的若尔当标准型。
STEP1:求的初等因子
注:定理指出,矩阵的特征矩阵()一定可以通过初等变换化为上述标准型,称为矩阵的标准型。
初等因子:矩阵的标准型对角线上次数大于0且首项为1的一次方幂。
本例题中,初等因子为,。
注:虽然上述两个初等因子对应的特征值相同,但是代表两个不同的若尔当块。
STEP2:写出每个初等因子对应的若尔当块
初等因子对应的特征值为对应若尔当块对角线元素,初等因子的阶数为对应若尔当块的阶数。
对应的若尔当块为:;
对应的若尔当块为:
STEP3:写出若尔当标准型
与的顺序可以变,但一般按照初等因子的顺序。
方法二:求特征值法
例:求矩阵 的若尔当标准型。
STEP1:求矩阵的特征值
令,解得;
STEP2:求每个特征值的几何重数(相同特征值求一次即可)
几何重数:代表该特征值对应的若尔当块的个数;几何重数=特征矩阵的列数-rank(特征矩阵)。
本题中:对应的几何重数==3-1=2。
STEP3:求每个特征值对应的若尔当块的最大阶数
设每个特征值对应的若尔当块的最大阶数为,则为使成立的最小正整数。
引用https://blog.csdn.net/xuehuafeiwu123/article/details/53321730
本题中,由于为零矩阵,所以k=2,即对应的若尔当块的最大阶数为2,所以有两个若尔当块,一个一阶的,一个二阶的,即:
STEP4:写出若尔当标准型
与的顺序可以变。
方法三:求Q矩阵(特征值均互异可用)
STEP1:求矩阵的特征值
STEP2:求矩阵的特征值对应的特征向量p1,p2,p3
STEP3:由特征向量组成Q矩阵
STEP4:求J
J=Q-1*A*Q
参考文献
[1]王萼芳,石生明.高等代数[M].北京:高等教育出版社,2013:342-348.