矩阵多项式求解

本文详细介绍了如何求解矩阵多项式,包括通过矩阵直接相乘和利用特征多项式的方法。首先,写出多项式,然后计算矩阵的特征值。接着,设定未知数并建立方程组求解。最后,根据特征值的代数重数,写出表达式并得出最终结果。这种方法适用于求解任意大小的nXn矩阵。
摘要由CSDN通过智能技术生成

矩阵多项式的求解方法,例如A^{x},e^{At}


方法一:矩阵直接相乘(对于A^{x}来说)


方法二:利用定理

以求解矩阵A^{x}(nXn)为例。

STEP1:写出多项式f(\lambda )=\lambda ^{x}

STEP2:写出矩阵A的特征多项式\Delta \lambda,求出特征值

STEP3:设h(\lambda )=\beta _{0}+\beta _{1}\lambda +\cdots +\beta _{n-1}\lambda ^{n-1}

STEP4:计算n个未知数\beta _{0}\cdots \beta _{n-1},可通过以下方程组求得

f^{(l)}(\lambda _{i})=h^{(l)}(\lambda_{i} \),l=0,1,\cdots ,m-1

m为该特征值的代数重数。

STEP5:写出h(\lambda )表达式

STEP6:由f(A)=h(A)得出:

A^{x}=h(A)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值