入射波反射波和驻波的基本推导
学习雷达过程中,发现阻抗匹配是一道迈不过去的坎,而阻抗匹配、能量传输与电压驻波比又有千丝万缕的联系,而电压驻波比则与反射波、入射波等相关的特性有关,于是写下此文章记录一下推导过程。 懒得正经画图,仅作为记录备份,大家凑合看。
推导
波的传播过程如下图所示
可见,后面的波的相位是滞后于前面的波的。而且波函数不仅和传播距离
r
r
r有关,还和时间
t
t
t有关。令入射波为
f
1
(
t
,
r
)
f_1(t,r)
f1(t,r),反射波为
f
2
(
t
,
r
)
f_2(t,r)
f2(t,r),合成波为
f
(
t
,
r
)
f(t,r)
f(t,r)。那么推导如下
f
1
(
t
,
r
)
=
s
i
n
(
ω
(
t
−
r
v
)
)
=
s
i
n
(
ω
t
−
ω
r
v
)
=
s
i
n
(
ω
t
−
k
r
)
f_1(t,r) = sin(\omega(t-\frac{r}{v})) = sin(\omega t-\frac{\omega r}{v}) = sin(\omega t-kr)
f1(t,r)=sin(ω(t−vr))=sin(ωt−vωr)=sin(ωt−kr)
其中
r
r
r为传播距离,
v
v
v为波速。
k
=
2
π
λ
,
v
=
λ
f
,
ω
=
2
π
f
k = \frac{2 \pi}{\lambda}, v = \lambda f, \omega = 2 \pi f
k=λ2π,v=λf,ω=2πf。
那么当波到达
R
R
R处,碰到反射体,那么将会产生反射波。
首先有入射波满足
f
1
(
t
,
R
)
=
=
s
i
n
(
ω
(
t
−
R
v
)
)
=
s
i
n
(
ω
t
−
k
R
)
f_1(t,R) = =sin(\omega (t - \frac{R}{v} )) =sin(\omega t - kR)
f1(t,R)==sin(ω(t−vR))=sin(ωt−kR)。假设反射造成的附加相移为
ϕ
Δ
\phi_\Delta
ϕΔ,一般来说波疏介质到波密介质传播发生反射时附加相移就是
π
\pi
π,但是其它情况就不确定了。那么反射波
f
2
(
t
,
R
)
=
s
i
n
(
ω
t
−
k
R
+
ϕ
Δ
)
f_2(t,R) = sin(\omega t - kR + \phi_\Delta)
f2(t,R)=sin(ωt−kR+ϕΔ)。那么反射波由右向左传播,那么传播距离为
R
−
r
R-r
R−r,则有
f
2
(
t
,
r
)
=
s
i
n
(
ω
(
t
−
R
v
−
R
−
r
v
)
+
ϕ
Δ
)
=
s
i
n
(
w
(
t
+
r
v
)
+
ϕ
Δ
−
2
R
v
)
f_2(t,r) = sin(\omega (t - \frac{R}{v} - \frac{R-r}{v}) + \phi_\Delta) = sin(w(t+\frac{r}{v})+\phi_\Delta-\frac{2R}{v})
f2(t,r)=sin(ω(t−vR−vR−r)+ϕΔ)=sin(w(t+vr)+ϕΔ−v2R)。
那么有
2
R
v
\frac{2R}{v}
v2R可看成常数
ϕ
1
\phi_1
ϕ1,令
ϕ
=
ϕ
Δ
−
2
R
v
\phi=\phi_\Delta -\frac{2R}{v}
ϕ=ϕΔ−v2R,有
f
2
(
t
,
r
)
=
s
i
n
(
ω
t
+
k
r
+
ϕ
)
f_2(t,r) =sin(\omega t + kr + \phi)
f2(t,r)=sin(ωt+kr+ϕ)
那么有合成波
f
(
t
,
r
)
=
f
1
(
t
,
r
)
+
f
2
(
t
,
r
)
f(t,r) = f_1(t,r) + f_2(t,r)
f(t,r)=f1(t,r)+f2(t,r),通过和差化积,得到
f
(
t
,
r
)
=
2
c
o
s
(
k
r
+
ϕ
2
)
s
i
n
(
ω
t
+
ϕ
2
)
f(t,r) = 2cos(kr+\frac{\phi}{2})sin(\omega t+ \frac{\phi}{2})
f(t,r)=2cos(kr+2ϕ)sin(ωt+2ϕ)。
可见,合成波在距离上呈现余弦波包络,包络内部波随着时间震荡。
驻波
两列沿相反方向传播的振幅相同、频率相同的波叠加时形成的波叫做驻波。可见,反射波和入射波恰好符合形成驻波的条件。那么波节的位置即可以让余弦项为0求得,波腹则让余弦项最大。最终结果不好展示,贴个MATLAB代码大家去试试吧。
f = 300;
w = 2*pi*f;
R = 10;
v = 10;
lambda = v/f;
phi = pi/2;
r = 0:0.001:0.5;
k = 2*pi/lambda;
axis([0 0.5 -2 2]);
for t = 0:0.0001:1
f4 = sin(w*t + phi/2); %内部振幅
f3 = 2*cos(k*r+phi/2); %包络
f5 = f3.*f4;
f1 = sin(w*t-k*r);
f2 = sin(w*t+k*r+phi);
f = f1+f2;
figure(1)
hold on
plot(r,f,'r');
plot(r,f3,'--');
% plot(r,f5,'b-');
pause(0.1);
hold off
clf
axis([0 0.5 -2 2]);
end
如果反射电压幅度和入射电压幅度不一致,那么可用下面的程序来进行模拟
f = 300;
w = 2*pi*f;
R = 10;
v = 10;
lambda = v/f;
phi = pi/2;
r = 0:0.001:0.5;
k = 2*pi/lambda;
A1 = 1;
A2 = 0.5;
axis([0 0.5 -2 2]);
for t = 0:0.0001:1
f4 = sin(w*t + phi/2); %内部振幅
f3 = 2*cos(k*r+phi/2); %包络
f5 = f3.*f4;
f1 = A1*sin(w*t-k*r);
f2 = A2*sin(w*t+k*r+phi);
f = f1+f2;
figure(1)
hold on
plot(r,f,'r');
plot(r,f3,'--');
% plot(r,f5,'b-');
pause(0.1);
hold off
clf
axis([0 0.5 -2 2]);
end
不过这样好像无法形成驻波,有点晕。