入射波反射波和驻波的特性推导

入射波反射波和驻波的基本推导

学习雷达过程中,发现阻抗匹配是一道迈不过去的坎,而阻抗匹配、能量传输与电压驻波比又有千丝万缕的联系,而电压驻波比则与反射波、入射波等相关的特性有关,于是写下此文章记录一下推导过程。 懒得正经画图,仅作为记录备份,大家凑合看。


推导

波的传播过程如下图所示
在这里插入图片描述

可见,后面的波的相位是滞后于前面的波的。而且波函数不仅和传播距离 r r r有关,还和时间 t t t有关。令入射波为 f 1 ( t , r ) f_1(t,r) f1(t,r),反射波为 f 2 ( t , r ) f_2(t,r) f2(t,r),合成波为 f ( t , r ) f(t,r) f(t,r)。那么推导如下
f 1 ( t , r ) = s i n ( ω ( t − r v ) ) = s i n ( ω t − ω r v ) = s i n ( ω t − k r ) f_1(t,r) = sin(\omega(t-\frac{r}{v})) = sin(\omega t-\frac{\omega r}{v}) = sin(\omega t-kr) f1(t,r)=sin(ω(tvr))=sin(ωtvωr)=sin(ωtkr)
其中 r r r为传播距离, v v v为波速。 k = 2 π λ , v = λ f , ω = 2 π f k = \frac{2 \pi}{\lambda}, v = \lambda f, \omega = 2 \pi f k=λ2π,v=λf,ω=2πf

那么当波到达 R R R处,碰到反射体,那么将会产生反射波。
首先有入射波满足
f 1 ( t , R ) = = s i n ( ω ( t − R v ) ) = s i n ( ω t − k R ) f_1(t,R) = =sin(\omega (t - \frac{R}{v} )) =sin(\omega t - kR) f1(t,R)==sin(ω(tvR))=sin(ωtkR)。假设反射造成的附加相移为 ϕ Δ \phi_\Delta ϕΔ,一般来说波疏介质到波密介质传播发生反射时附加相移就是 π \pi π,但是其它情况就不确定了。那么反射波 f 2 ( t , R ) = s i n ( ω t − k R + ϕ Δ ) f_2(t,R) = sin(\omega t - kR + \phi_\Delta) f2(t,R)=sin(ωtkR+ϕΔ)。那么反射波由右向左传播,那么传播距离为 R − r R-r Rr,则有
f 2 ( t , r ) = s i n ( ω ( t − R v − R − r v ) + ϕ Δ ) = s i n ( w ( t + r v ) + ϕ Δ − 2 R v ) f_2(t,r) = sin(\omega (t - \frac{R}{v} - \frac{R-r}{v}) + \phi_\Delta) = sin(w(t+\frac{r}{v})+\phi_\Delta-\frac{2R}{v}) f2(t,r)=sin(ω(tvRvRr)+ϕΔ)=sin(w(t+vr)+ϕΔv2R)
那么有 2 R v \frac{2R}{v} v2R可看成常数 ϕ 1 \phi_1 ϕ1,令 ϕ = ϕ Δ − 2 R v \phi=\phi_\Delta -\frac{2R}{v} ϕ=ϕΔv2R,有
f 2 ( t , r ) = s i n ( ω t + k r + ϕ ) f_2(t,r) =sin(\omega t + kr + \phi) f2(t,r)=sin(ωt+kr+ϕ)

那么有合成波 f ( t , r ) = f 1 ( t , r ) + f 2 ( t , r ) f(t,r) = f_1(t,r) + f_2(t,r) f(t,r)=f1(t,r)+f2(t,r),通过和差化积,得到
f ( t , r ) = 2 c o s ( k r + ϕ 2 ) s i n ( ω t + ϕ 2 ) f(t,r) = 2cos(kr+\frac{\phi}{2})sin(\omega t+ \frac{\phi}{2}) f(t,r)=2cos(kr+2ϕ)sin(ωt+2ϕ)

可见,合成波在距离上呈现余弦波包络,包络内部波随着时间震荡。

驻波

两列沿相反方向传播的振幅相同、频率相同的波叠加时形成的波叫做驻波。可见,反射波和入射波恰好符合形成驻波的条件。那么波节的位置即可以让余弦项为0求得,波腹则让余弦项最大。最终结果不好展示,贴个MATLAB代码大家去试试吧。

f = 300;
w = 2*pi*f;
R = 10;
v = 10;
lambda = v/f;
phi = pi/2;

r = 0:0.001:0.5;
k = 2*pi/lambda;



axis([0 0.5 -2 2]);
for t = 0:0.0001:1
    f4 = sin(w*t + phi/2);  %内部振幅
    f3 = 2*cos(k*r+phi/2);   %包络
    f5 = f3.*f4;
    f1 = sin(w*t-k*r);
    f2 = sin(w*t+k*r+phi);
    f = f1+f2;
    figure(1)
    hold on
    plot(r,f,'r');
     plot(r,f3,'--');
%     plot(r,f5,'b-');
    pause(0.1);
    hold off
    clf
    axis([0 0.5 -2 2]);
end

如果反射电压幅度和入射电压幅度不一致,那么可用下面的程序来进行模拟

f = 300;
w = 2*pi*f;
R = 10;
v = 10;
lambda = v/f;
phi = pi/2;

r = 0:0.001:0.5;
k = 2*pi/lambda;

A1 = 1;
A2 = 0.5;

axis([0 0.5 -2 2]);
for t = 0:0.0001:1
    f4 = sin(w*t + phi/2);  %内部振幅
    f3 = 2*cos(k*r+phi/2);   %包络
    f5 = f3.*f4;
    f1 = A1*sin(w*t-k*r);
    f2 = A2*sin(w*t+k*r+phi);
    f = f1+f2;
    figure(1)
    hold on
    plot(r,f,'r');
    plot(r,f3,'--');
%     plot(r,f5,'b-');
    pause(0.1);
    hold off
    clf
    axis([0 0.5 -2 2]);
end

不过这样好像无法形成驻波,有点晕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值