基于矩阵分解的隐因子模型

基于矩阵分解的隐因子模型

推荐系统是现今广泛运用的一种数据分析方法。常见的如,“你关注的人也关注他”,“喜欢这个物品的用户还喜欢。。”“你也许会喜欢”等等。

 

常见的推荐系统分为基于内容的推荐与基于历史记录的推荐。

基于内容的推荐,关键在于提取到有用的用户,物品信息,以此为特征向量来进行分类,回归。

基于历史记录的推荐,记录用户的评分,点击,收藏等等行为,以此来判断。

基于内容的推荐对于用户物品的信息收集度要求比较高,而许多情况下很难得到那么多的有用信息。而基于历史记录的方法,则利用一些常见的历史记录,相比与基于内容的方法,数据的收集比较容易。

协同过滤广泛运用在推荐系统中。一般的方式是通过相似性度量,得到相似的用户集合,或者相似的物品集合,然后据此来进行推荐。

Amazon的图书推荐系统就是使用的基于物品相似性的推荐,“我猜你还喜欢**物品”。

不过,简单的协同过滤效果不是很好,我们或考虑用户聚类,得到基于用户的协同过滤;或只考虑物品聚类,得到基于物品的协同过滤。

 

有人提出了基于矩阵分解(SVD)的隐因子模型(Latent Factor Model)。

隐因子模型通过假设一个隐因子空间,分别得到用户,物品的类别矩阵,然后通过矩阵相乘得到最后的结果。在实践中,LFM的效果会高于一般的协同过滤算法。

 

1.      LFM基本方法

 

我们用user1,2,3表示用户,item 1,2,3表示物品,Rij表示用户i对于物品j的评分,也就是喜好度。那么我们需要得到一个关于用户-物品的二维矩阵,如下面的R。

基于矩阵分解的隐因子模型

 

常见的系统中,R是一个非常稀疏的矩阵,因为我们不可能得到所有用户对于所有物品的评分。于是利用稀疏的R,填充得到一个满矩阵R’就是我们的目的。

 

在协同过滤中,我们通常会假设一些用户,或者一些物品属于一个类型,通过类型来推荐。这这里,我们也可以假设类(class),或者说是因子(factor)。我们假设用户对于特定的因子有一定的喜好度,并且物品对于特定的因子有一定的包含度。

比如,用户对于喜剧,武打的喜好度为1,5;而物品对于喜剧,武打的包含度为5,1;那么我们可以大概地判断用户不会喜欢这部电影。

也就是我们人为地抽象出一个隐形因子空间,然后把用户和物品分别投影到这个空间上,来直接寻找用户-物品的喜好度。

一个简单的二维隐因子空间示意图如下:

基于矩阵分解的隐因子模型

 

上图以男-女;轻松-严肃;两个维度作为隐因子,把用户和电影投影到这个二维空间上。

上面的问题,我们用数学的方法描述,就是写成如下的矩阵:

 

P表示用户对于某个隐因子的喜好度;Q表示物品对于某个隐因子的包含度。我们使用矩阵相乘得到用户-物品喜好度。

 基于矩阵分解的隐因子模型

正如上面所说,R是一个稀疏的矩阵,我们通过R中的已知值,得到P,Q后,再相乘,反过来填充R矩阵,最后得到一个满的R矩阵。

 

于是隐因子模型转化为矩阵分解问题,常见的有SVD,以及下面的一些方法。

下面介绍具体的方法

 

2.      Batch learning of SVD

设已知评分矩阵V,I为索引矩阵,I(I,j)=1表示V中的对应元素为已知。U,M分别表示用户-factor,物品-factor矩阵。

于是,我们先用V分解为U*M,目标函数如下:

基于矩阵分解的隐因子模型

 

第一项为最小二乘误差,P可以简单理解为点乘;

第二项,第三项为防止过拟合的正则化项。

 

求解上述的优化问题,可以用梯度下降法。计算得负梯度方向如下:

基于矩阵分解的隐因子模型

 

我们每次迭代,先计算得到U,M的负梯度方向,然后更新U,M;多次迭代,直至收敛。

这种方法的缺点是对于大的稀疏矩阵来说,有很大的方差,要很小的收敛速度才能保证收敛。

 

改进:可以考虑加入一个动量因子,来加速其收敛速度:

 

 

3.      Incomplete incremental learning of SVD

上述的方法对于大的稀疏矩阵来说,不是很好的方法。

于是,我们细化求解过程。

改进后的最优化目标函数如下:

基于矩阵分解的隐因子模型

 

也就是,我们以V的行为单位,每次最优化每一行,从而降低batch learning的方差。

负梯度方向:

基于矩阵分解的隐因子模型

 

 

4.      Complete incremental learning of SVD

同样的,根据incrementlearning的减少方差的思想,我们可以再次细化求解过程。

以V的已知元素为单位,求解。

最优化目标函数如下:

 基于矩阵分解的隐因子模型

每次迭代,我们遍历每个V中的已知元素,求得一个负梯度方向,更行U,M;

 基于矩阵分解的隐因子模型

 

 

另两个改进的SVD-bias SVD 和constraint SVD。

 

bias-SVD

一般的SVD的最优化目标函数如下:

 

其中第一项为最小二乘项,后两项为正则化约束,防止过拟合。

 第一项中的P,可以简单定义为点乘,如下:

P=Ui’*Mj;

 

我们知道,每个用户都有不同的打分习惯。比如,A,B两个用户对于电影C都是同样的喜好层度,为3。不过A是一个严格的打分者,他一般倾向于保守打分,于是A给电影C的打分为3-0.5=2.5;而B是一个宽松的打分者,他的分数便为3+0.5=4;

 如果我们不考虑上面的因素,就会简单地判断B更喜欢电影C。

 

于是,我们希望引入一个无偏的喜好度U和M,以及额外的bias偏差变量alfa,beta。用U,M来描述无偏喜好,alfa,beta描述打分宽松度。这样,我们的P函数就可以写成:

如果在加入一个基本分a,公式最终可以写成:

 

 

 

目标函数:

 

 基于矩阵分解的隐因子模型

上述为四个变量的凸优化过程,其中关于Ui,Mj的负梯度同completeincremental SVD,而关于alfa,beta的求解如下:

 

负梯度:

 

 基于矩阵分解的隐因子模型

 

于是我们遍历整个V矩阵,对于已知元素,更新上面四个值;迭代计算,直至收敛。

 

Constraint SVD

SVD是矩阵乘法的方式,得到用户-物品可能喜好度。从数学形式上我们可以看出,隐因子模型同时考虑了用户聚类,物品聚类,用类似聚类的信息填充了这些Miss value。如果某个用户的U-M行过于稀疏,而某个物品M-U不稀疏,(这种情况是常见的)。那么Miss value的填充很大程度上取决于这个物品的属性,最后得到近似于这个物品的平均值。

也就是,在用户,物品信息不平衡的情况下,我们容易减少用户对于喜好的影响程度。如下的contraint SVD一定程度上解决了这个问题。

我们重新定义U矩阵,如下:

基于矩阵分解的隐因子模型

 

其中Y表示用户的无偏喜好,I为已知元素的索引,W为一个大小=物品矩阵M-factor的矩阵。

我们可以看出,对于不同的用户,只要他们购买相同的物品,那么后一项就会完全一样。以此来进一步刻画用户特征。

对于稀疏的用户行为,后一项相当于预先填充了用户矩阵。

 

目标函数:

 

 基于矩阵分解的隐因子模型

其中

 

负梯度方向:

 

 基于矩阵分解的隐因子模型

 

算法优化:

上面的负梯度中,我们可以看出,每次计算时,对于同一用户来说,这一行的目标值,都具有相同的一项,于是我们可以考虑以行为单位,记录中间重复计算的项,以此简化计算。

 

参考文献:A Guide to Singular Value Decomposition for Collaborative Filtering

更多相关文章
  • 基于矩阵分解的推荐系统实例
    使用MATLAB尝试了随机梯度下降的矩阵分解方法,实现了一个比较简单的推荐系统的原理. 常用推荐系统的方法有协同过滤,    基于物品内容过滤等等.   这次是用的矩阵分解模型属于协同过滤的一种方法,大致原理是通过一定数量的因子来描述各个用户的喜好和各个物品的属性. 通过随机梯度下降法分解后得到两个 ...
  • 问题提出:对于协同过滤,我们就是要预测用户所喜欢的但是又没有发现的物品,下面给出一个明确的评分矩阵,设为A,但是A有一部分没有值,表明用户没有对此物品评分,于是我们需要预测出没有值的评分部分.解决方法: 我们知道有基于用户和基于物品的协同过滤算法,通过计算用户或物品的相似度来求得所缺失的打分.这里将 ...
  • 矩阵分解之奇异值分解
    矩阵分解之奇异值分解 引言 首先说矩阵,矩阵是一个难理解的数学描述,不管是在本科阶段的线性代数课上还是在研究生阶段的矩阵分析课上,都没有使我对矩阵产生什么好感,虽然考试也能过关,基本知识也能理解,但就是不知道有卵用.直到接触了机器学习相关算法论述时,发现好多的机器学习算法最终的描述都是通过矩阵分析相 ...
  • 一.基本概念 基本的矩阵分解方法通过学习用户和物品的特征向量进行预测,即用户和物品的交互信息.用户的特征向量代表了用户的兴趣,物品的特征向量代表了物品的特点,且每一个维度相互对应,两个向量的内积表示用户对该物品的喜好程度.但是我们观测到的评分数据大部分都是都是和用户或物品无关的因素产生的效果,即有很 ...
  • 矩阵分解方法
    一.矩阵分解概述 我们都知道,现实生活中的User-Item矩阵极大(User数量极大.Item数量极大),而用户的兴趣和消费能力有限,对单个用户来说消费的物品,产生评分记录的物品是极少的.这样造成了User-Item矩阵含有大量的空值,数据极为稀疏.矩阵分解的核心思想认为用户的兴趣只受少数几个因素 ...
  • 这篇文章主要介绍了C#实现将一个矩阵分解为对称矩阵与反称矩阵之和的方法,较为详细的分析了矩阵分解运算的原理与C#实现技巧,需要的朋友可以参考下本文实例讲述了C#实现将一个矩阵分解为对称矩阵与反称矩阵之和的方法.分享给大家供大家参考.具体如下:1.理论依据对任意n阶方阵A,有 A=(A+T(A))/2 ...
  • 矩阵分解开源库libMF源码分析
    libMF介绍libMF是由台湾大学林智仁老师实验室开发的,一个用于推荐系统领域的矩阵分解开源库.矩阵分解通常用于协同过滤方法.libMF的主要特点:用了user和item的隐含特征,user和item的评分偏差bias及所有评分的评分值.libMF可以用于多核CPU的并行化计算,并且还可以有效利用 ...
  • 很不错的文章,下面的数学知识干嘛用看看就知道了.什么是特征向量,特征值,矩阵分解[1. 特征的数学意义]        我们先考察一种线性变化,例如x,y坐标系的椭圆方程可以写为x^2/a^2+y^2/b^2=1,那么坐标系关于原点做旋转以后,椭圆方程就要发生变换.我们可以把原坐标系的(x,y)乘以 ...
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值