wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)

         接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex、ZF、Inception、Res、InceptionRes)。          抄自于各个博客,有大量修改,如有疑问,请移步各个原文.....                     前言:AutoML-Na...

2018-05-11 15:39:19

阅读数:777

评论数:0

人工机器:机器学习的哲学原理、基础及完备性的来由

        观测->假设->归纳->演绎->过拟合,这是ML的一般套路和基础指导准则。 导言         对于人工智能,有诸多定义,也有诸多质疑。各家的定义不用多追究。从各个领域提出对机器学习的理解...

2018-03-11 14:37:44

阅读数:534

评论数:0

AI:IPPR的数学表示-CNN结构进化(Alex、ZF、Inception、Res、InceptionRes)

前言:         深度学习:sigmod、tanh、ReLU函数的优缺点-文章图文并举;文章:CNN的结构分析--;  文章:历年ImageNet冠军模型网络结构解析---; 文章:GoogleLeNet系列解读---; 文章:DNN结构演进History—CNN-GoogLeNet :G...

2017-07-24 16:54:45

阅读数:3318

评论数:0

AI:IPPR的数学表示-CNN基本结构分析( Conv层、Pooling层、FCN层/softmax层)

        类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长。比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支持向量的个数会随着数据集增长,SVM三层网会变得非常宽。CNN方法的多层结构,在保...

2017-07-17 13:50:57

阅读数:1169

评论数:0

三维重建5:场景中语义分析/语义SLAM/DCNN-大尺度SLAM

在实时/非实时大规模三维场景重建中,引入了语义SLAM这个概念,参考三维重建:SLAM的尺度和方法论问题 和三维重建:SLAM的粒度和工程化问题 。大规模三维场景重建的尺度增大,因此相对于整个重建过程的粒度也从点到特征点到目标物体级别,对场景进行语义标记成为重要的工作。

2017-06-20 10:50:07

阅读数:6516

评论数:0

人工机器:人工智能中的机器学习方法

        人工智能的定义为基于表观的行为定义,即图灵测试,可以形式化为模式识别。智能从知识论的角度分析,归纳明确知识规则构建知识图谱系统形成专家系统,而通过数据获得归纳规则约束参数为机器学习系统,即基于数据的模式识别系统。大量的机器学习模型,可以抽象为特定形式的神经网络,处理输入数据为定长输...

2018-12-06 15:44:13

阅读数:156

评论数:0

DNN:LSTM的前向计算和参数训练

原文-LSTM的反向传播:深度学习(6)-长短期网路;此处仅摘抄一小段,建议拜访全文。 LSTM的参数训练:https://www.jianshu.com/p/dcec3f07d3b5;LSTM的参数训练和前向计算比RNNs还是稍微复杂一些。 长短时记忆网络的前向计算 前面描述的开关是怎样在...

2018-11-29 17:26:55

阅读数:23

评论数:0

EnforceLearning-迁移学习-监督训练与非监督训练

前言         CNN刷分ImageNet以来,迁移学习已经得到广泛的应用,不过使用ImageNet预训练模型迁移到特定数据集是一个全集到子集的迁移,不是标准定义的迁移学习。         迁移学习(Transfer Learning,TL)对于人类来说,就是掌握举一反三的学习能力。比...

2018-11-27 17:55:21

阅读数:68

评论数:0

NLP:NLM-神经语言模型

文章:自然语言处理模型;经过几天对nlp的理解,接下来我们说说语言模型,下面还是以PPT方式给出。 一、统计语言模型   1、什么是统计语言模型? 一个语言模型通常构建为字符串s的概率分布p(s),这里的p(s)实际上反映的是s作为一个句子出现的概率。 这里的概率指的是组成字符串的这个组合,...

2018-11-26 15:56:09

阅读数:98

评论数:0

DNN:追根溯源!一图看尽深度学习架构谱系

最喜欢这种直观简单的总结性文章了:一图看尽深度学习架构谱系--2017年的一个总结... 完整谱系图: 记忆网络 在记忆网络分支中,hunkim 标注了三篇重要论文:《记忆网络》、《端到端记忆网络》、《DMN:动态记忆网络》。神经编程是记忆网络的下一级分支,包含神经图灵机、混合计算等论文...

2018-11-12 17:02:57

阅读数:49

评论数:0

DNN:参数训练过程中的BN-白化-LCN

        Batch Normalization (以下简称为 BN )来自两位 Google 研究员发表的一篇重要论文[1] ,中文一般翻译为“批标准化/规范化”。其核心思想是,在深度网络的中间层内添加正态标准化处理(作为 BN 层出现),同时约束网络在训练过程中自动调整该标准化的强度,从...

2018-11-08 17:49:05

阅读数:82

评论数:0

OCR算法:CNN+BLSTM+CTC架构(VS15)

原文链接:OCR算法-CNN+BLSTM+CTC架构 由于作者使用了Boost1.57-Vc14,而1.57的VC14版本作者没有给出下载链接,因此需要自行编译,建议换掉作者的第三方库,使用其他的库,比如:这篇文章:VS编译Caffe非常简单。网盘:3rdlibVC14。 有少量的改动,如有疑...

2018-08-30 17:03:40

阅读数:341

评论数:0

DNN结构:CNN、LSTM/RNN中的Attention结构

前言        attention作为一种机制,有其认知神经或者生物学原理: 注意力的认知神经机制是什么?        如何从生物学的角度来定义注意力?        大多数attention (gating) 技巧都可以直接加入现有的网络架构,通过合理设计初始化和训练步骤也可以利...

2018-07-06 16:48:01

阅读数:2114

评论数:0

CNN的稀疏结构分析-CVPR2018

文章地址:CVPR2018高效小网络探秘...CVPR2018高效小网络探秘II...本文介绍、梳理和对比高效小网络,包括早期的经典模型SqueezeNet, MobileNet(V1), 和CVPR 2018最新模型ShuffleNet, IGCV2, MobileNetV2, 探究短小精悍的秘...

2018-07-05 18:03:40

阅读数:1754

评论数:0

Learning Face Age Progression: A Pyramid Architecture of GANs

前言       作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向。基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式、end2end、以及MaskCNN模型,而后出现基于CNN的预测模型-AcGans。       CNN作为一个基本...

2018-06-19 17:44:36

阅读数:2251

评论数:0

个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page?

文章链接:个人技术博客的选择:CSDN、博客园、简书、知乎专栏还是Github Page? 感觉还是Fuck The Dog!看来还是以后把文章写在本地,然后再上传到CSDN吧。被CSDN的缓存机制坑了几次,得非常注意这次事件才行!!!...

2018-06-19 17:21:50

阅读数:3129

评论数:0

博客需要搬家

太他nia的垃圾了,写完之后点击发布,只保留了前一段,后面的长篇大论全都没了,感情是自动保存草稿的那一段,其他的呢。其他的呢?本地的没有上传上去,这个缓存机制有很大问题,太恶心人了!转移到其他地方吧................

2018-06-19 16:54:51

阅读数:600

评论数:0

Learning Face Age Progression: A Pyramid Architecture of GANs

前言       作为IP模式识别的CNN初始模型是作为单纯判别式-模式识别存在的,并以此为基本模型扩展到各个方向。基本功能为图像判别模型,此后基于Loc+CNN的检测模型-分离式、end2end、以及MaskCNN模型,而后出现基于CNN的预测模型-AcGans。       CNN作为一个基本...

2018-06-19 16:40:44

阅读数:688

评论数:0

语义分割:使用关系图辅助图像分割-Capsule Network、IceNet

文章:欲取代CNN的Capsule Network究竟是什么来头?它能为AI界带来革命性转折么?

2018-06-06 16:48:35

阅读数:768

评论数:0

预测学习:深度生成式模型、DcGAN、应用案例、相关paper

         大模型需要更大量的数据,用以拟合更复杂的假设空间。GAN本身可以用于生成数据,在GAN的学习过程中隐藏了弱监督学习和增强学习的思想。下文主要是对GAN应用于NLP进行相关分析,配图不错,摘抄下来,删除掉关于NLP的部分。本文有大量修改,如有疑虑,请移步原文。       文章:深...

2018-06-05 15:08:54

阅读数:1159

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭