TF实战:(Mask R-CNN原理介绍与代码实现)-Chapter-8

       这篇文章写的挺辛苦,不过对于Mask介绍着墨不多。

       文章: TF实战:Chapter-8上(Mask R-CNN介绍与实现)

      

...............................................

     MRCNN采用和Faster R-CNN相同的两个阶段,具有相同的第一层(即RPN),第二阶段,除了预测种类和bbox回归,并且并行的对每个RoI预测了对应的二值掩膜(binary mask)。示意图如下:

mark

这样做可以将整个任务简化为mulit-stage pipeline,解耦了多个子任务的关系,现阶段来看,这样做好处颇多。

主要工作

损失函数的定义

依旧采用的是多任务损失函数,针对每个每个RoI定义为

L=Lcls+Lbox+Lmask
LclsLbox与Faster R-CNN的定义类似,这里主要看 Lmask

掩膜分支针对每个RoI产生一个Km2

的输出, 即K个分辨率为m×m的二值的掩膜K为分类物体的种类数目。依据预测类别分支预测的类型 i,只将第 i的二值掩膜输出记为 Lmask


掩膜分支的损失计算如下示意图:

  1. mask branch 预测K
个种类的 m×m
二值掩膜输出依据种类预测分支(Faster R-CNN部分)预测结果:当前RoI的物体种类为 i
i个二值掩膜输出就是该RoI的损失 Lmask

mark

对于预测的二值掩膜输出,我们对每个像素点应用sigmoid函数,整体损失定义为平均二值交叉损失熵。
引入预测K

个输出的机制,允许每个类都生成独立的掩膜,避免类间竞争。这样做解耦了掩膜和种类预测。不像是FCN的方法,在每个像素点上应用softmax函数,整体采用的多任务交叉熵,这样会导致类间竞争,最终导致分割效果差。

掩膜表示到RoIAlign层

在Faster R-CNN上预测物体标签或bbox偏移量是将feature map压缩到FC层最终输出vector,压缩的过程丢失了空间上(平面结构)的信息,而掩膜是对输入目标做空间上的编码,直接用卷积形式表示像素点之间的对应关系那是最好的了。

输出掩膜的操作是不需要压缩输出vector,所以可以使用FCN(Full Convolutional Network),不仅效率高,而且参数量还少。为了更好的表示出RoI输入和FCN输出的feature之间的像素对应关系,提出了RoIAlign层。

先回顾一下RoIPool层:

其核心思想是将不同大小的RoI输入到RoIPool层,RoIPool层将RoI量化成不同粒度的特征图(量化成一个一个bin),在此基础上使用池化操作提取特征。

下图是SPPNet内对RoI的操作,在Faster R-CNN中只使用了一种粒度的特征图:

mark

平面示意图如下:

mark

这里面存在一些问题,在上面量操作上,实际计算中是使用的是[x/16]

16的量化的步长, [·]

是舍入操作(rounding)。这套量化舍入操作在提取特征时有着较好的鲁棒性(检测物体具有平移不变性等),但是这很不利于掩膜定位,有较大负面效果。

针对这个问题,提出了RoIAlign层:避免了对RoI边界或bin的量化操作,在扩展feature map时使用双线性插值算法。这里实现的架构要看FPN论文:

mark

一开始的Faster R-CNN是基于最上层的特征映射做分割和预测的,这会丢失高分辨下的信息,直观的影响就是丢失小目标检测,对细节部分丢失不敏感。受到SSD的启发,FPN也使用了多层特征做预测。这里使用的top-down的架构,是将高层的特征反卷积带到低层的特征(即有了语义,也有精度),而在MRCNN论文里面说的双线性差值算法就是这里的top-down反卷积是用的插值算法。

总结

MRCNN有着优异的效果,除去了掩膜分支的作用,很大程度上是因为基础特征网络的增强,论文使用的是ResNeXt101+FPN的top-down组合,有着极强的特征学习能力,并且在实验中夹杂这多种工程调优技巧。

但是吧,MRCNN的缺点也很明显,需要大的计算能力并且速度慢,这离实际应用还是有很长的路,坐等大神们发力!

...................

请参考原文.............




  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值