wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

三维重建6:绑架问题/SensorFusion/IMU+CV-小尺度SLAM

机器人的“绑架”问题是指在缺少它之前的位置信息情况下,去确定机器人的当前位姿,例如当机器人被安置在一个已经构建好地图的环境中,但是并不知道它在地图中的相对位置,或者在移动过程中,由于传感器的暂时性功能故障或相机的快速移动,都导致机器人先前的位置信息的丢失,就像人质的眼睛被蒙上黑布条,拉上集装箱被运...

2017-06-20 14:10:28

阅读数:5387

评论数:0

三维重建5:场景中语义分析/语义SLAM/DCNN-大尺度SLAM

在实时/非实时大规模三维场景重建中,引入了语义SLAM这个概念,参考三维重建:SLAM的尺度和方法论问题 和三维重建:SLAM的粒度和工程化问题 。大规模三维场景重建的尺度增大,因此相对于整个重建过程的粒度也从点到特征点到目标物体级别,对场景进行语义标记成为重要的工作。

2017-06-20 10:50:07

阅读数:6462

评论数:0

NLP:单词嵌入Word Embeddings

我想从深度学习研究的一个非常有意思的部分讲起,它就是:单词嵌入(word embeddings)。在我看来,单词嵌入是目前深度学习最让人兴奋的领域之一,尽管它最早是由Bengio等人在十多年前提出的(见注解3)。除此之外,我认为它们能帮助你通过直觉来了解为什么深度学习如此有效。

2017-06-27 10:52:53

阅读数:372

评论数:0

三维重建7:Visual SLAM算法笔记

此文是一个好的视觉SLAM综述,对视觉SLAM总结比较全面,是SLAM那本书的很好的补充。介绍了基于滤波器的方法、基于前后端的方法、且介绍了几个SensorFusion方法,总结比较全面。

2017-06-20 19:53:57

阅读数:4584

评论数:0

三维重建4:Jacobian矩阵和Hessian矩阵

        在使用BA平差之前,对每一个观测方程,得到一个代价函数。对多个路标,会产生一个多个代价函数的和的形式,对这个和进行最小二乘法进行求解,使用优化方法。相当于同时对相机位姿和路标进行调整,这就是所谓的BA。         在优化过程中,对每一个代价函数求取雅克比矩阵E和F,形成一个...

2017-06-19 16:11:09

阅读数:2157

评论数:0

三维重建3:旋转矩阵-病态矩阵、欧拉角-万向锁、四元数

       摘抄部分有意思的链接,如有不适,请移步原文。        参考知乎上的文章链接:如何形象地理解四元数?  ;一个详尽的可作为教程的翻译:理解四元数的中文翻译... ; 英文原文:http://www.3dgep.com/understanding-quaternions/。建议详...

2017-06-19 15:09:11

阅读数:1778

评论数:0

人工机器:NDC-谷歌机器翻译破世界纪录,仅用Attention模型,无需CNN和RNN

NTM的成熟体DNC竟然达到了这种能力,不知道进化成完全体会是什么样子。竟然在机器翻译的准确率上超过了已经公布的所有模型,不愧是最接近现阶段最接近图灵机的有限图灵机。 在数码宝贝中,我最喜欢的是阿和的加布兽进化的究极体数码宝贝——钢铁加鲁鲁,其使用的武器绝对冷冻气——就洋溢着极其欠揍的高冷味道。

2017-06-14 20:07:15

阅读数:2269

评论数:1

Cell期刊论文:为什么计算机人脸识别注定超越人类?(祖母论与还原论之争)

“祖母细胞”(grandmother cell),这种学说的核心观点认为人脑中存在一些“超级神经元”,单独一个这样的神经元就能对一些复杂的目标(如人脸)有特异性反应,而不需依靠大量神经元相互协同工作。 还原论(reductionism)是个哲学概念,强调分析一个复杂事物时必须首先将其分解成相对简...

2017-06-14 19:33:41

阅读数:533

评论数:0

三维重建面试2: 地图构建-三角测量

在三维重建过程中,如果使用了IMU-惯导系统,一般可以得到一个大致可信的相机位姿转换。基于IMU短时间可信的原则,重建问题着重在地图的构建问题,即根据图像来获取点集的空间位置(六自由度),重要的一点的是获取深度信息。

2017-06-14 16:23:23

阅读数:846

评论数:0

三维重建面试1-位姿追踪:单应矩阵、本质矩阵和基本矩阵

本文所写与原文相距甚远,如有疑问,请拜访原文。 原文链接:单应矩阵Homograph matrix、本质矩阵Fundamental matrix、基本矩阵essential matrix 根据图像来估计位姿,一般称之为位姿追踪。非退化状态下可是根据匹配点求解Essential Matrix ,退化...

2017-06-14 16:06:57

阅读数:2175

评论数:0

Caffe2:ubuntuKylin17.04使用Caffe2.LSTM

ubuntuKylin17.04使用Caffe2 安装测试成功。 一早发现caffe2的较成熟的release版发布,那么深度学习平台在之后一段时间也是会出现其与tensorflow相互竞争的局面。 从打开这个caffe2的官网就会发现,有了Facebook的支持,连界面也好看多了。不过再仔细看看...

2017-06-01 11:45:41

阅读数:2648

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭