wishchinYang的专栏

生死去留,蓬头傀儡;一时线断,落落磊磊!不创造知识,只是知识的搬运工!...

AI:IPPR的数学表示-CNN结构进化(Alex、ZF、Inception、Res、InceptionRes)

前言:        文章:CNN的结构分析-------        文章:历年ImageNet冠军模型网络结构解析-------        文章:GoogleLeNet系列解读-------        文章:DNN结构演进History—CNN-GoogLeNet :Going De...

2017-07-24 16:54:45

阅读数:3070

评论数:0

AI:IPPR的数学表示-CNN基本结构分析( Conv层、Pooling层、FCN层/softmax层)

        类似于SVM,CNN为代表的DNN方法的边缘参数随着多类和高精度的要求必然增长。比如向量机方法,使用可以映射到无穷维的高斯核,即使进行两类分类,在大数据集上得到高精度,即保持准确率和高精度的双指标,支持向量的个数会随着数据集增长,SVM三层网会变得非常宽。CNN方法的多层结构,在保...

2017-07-17 13:50:57

阅读数:673

评论数:0

安卓手机使用前置摄像头

原文链接: 安卓调用前后摄像机以及代码实现 主要代码在这里: 使用null表示后置摄像机,camera2表示前置摄像机.....

2017-07-31 19:07:13

阅读数:2491

评论数:0

AI:IPPR的数学表示-CNN可视化语义分析

ANN是个语义黑箱的意思是没有通用明确的函数表示,参数化的模型并不能给出函数的实际意义,甚至不能以解析函数的形式表示。而CNN在图像处理方面具有天然的理论优势,而Conv层和Polling层,整流层等都有明确的意义。可以跳过函数形式直接进行语义级别的解析。 可视化是直观理解的一个...

2017-07-24 11:46:23

阅读数:244

评论数:0

AI:IPPR的模式生成-学习/训练方式(基本结构)

前言:        一个完备的模式识别系统,必然包含一个模式识别模型,此外还要附加一个评价模型,以及为了构建识别模型而构建的学习模型,并选择在学习模型中使用的学习方法。       表示(Representation) :    一个分类器必须用计算机可以处理的某种形式语言来表示。反过来讲,为模...

2017-07-23 22:02:14

阅读数:3239

评论数:0

三维重建面试13X:一些算法试题-今日头条AI-Lab

被人牵着鼻子走,到了地方还墨明棋妙地吃一顿砖头。今日头条AI-Lab,其实我一直发现,最擅长的还是点云图像处理,且只是点云处理。 New 与Malloc的区别;unique_ptr和shared_ptr的区别。

2017-07-18 22:08:53

阅读数:4395

评论数:1

AI:IPPR的数学表示-CNN结构/参数分析

前言:CNN迎接多类的挑战          特定类型的传统PR方法特征提取的方法是固定的,模式函数的形式是固定的,在理论上产生了特定的“局限性” 的,分类准确度可以使用PAC学习理论的方法计算出来。特定函数形式的模式识别准确度、泛化误差都受到模型本身VC维的限制。             使用不...

2017-07-12 12:15:02

阅读数:1256

评论数:0

AI:IPPR的数学表示-CNN方法

既然人工构建的特征hash函数并不能满足每一个场景的需求,每个经验都有局限,且特征提取的压缩映射必然导致压缩损失,为何不略过此环节,使用数据来完成此过程。越多的数据可生成越精确的分类结果,这就引出了一站式图像处理PR方法——CNN方法。IPPR又从分治法回到一站式方法。

2017-07-08 00:15:09

阅读数:959

评论数:0

AI:PR的数学表示-传统方法PR

在图像处理PR领域,相对于ANN方法,其他的方法一般称为传统方法。在结构上,几乎所有的PR方法都是可解释的。而在规则和语义上,ANN方法一般是无法解释的,称之为PR的语义黑箱。 对于图像处理IP来说,一般形式下的模式函数都是(降维)压缩hash函数。

2017-07-07 23:34:04

阅读数:648

评论数:0

AI:模式识别的数学表示(集合—函数观点)

模式函数是一个从问题定义域到模式值域的一个单射。 从简单的贝叶斯方法,到只能支持二分类的原始支持向量机,到十几个类的分类上最好用的随机森林方法,到可以支持ImageNet上海量1860个类且分类精度极高的InceptionV4,其模式函数为 f( x ) = { X——>Y }|{ ...

2017-07-07 18:24:10

阅读数:452

评论数:0

三维重建12:室内三维物体的位姿识别论文列表

四年前的论文列表拿出来,用来怀念一下。 在三维目标位姿识别的通路搭建过程中,使用到了下面列举的论文,其他使用到的方法相关性不是特别强,因此暂时没有列举出来。其中,有些论文没卵用,只是用来灌水的,看一下即可,不用深究。

2017-07-04 01:48:06

阅读数:2164

评论数:0

三维重建11:点云的全局特征总结

点云的检测和分类一般使用全局特征,传统的检测方法严重依赖于点云的场景分割,所幸的是点云的分割一般情况下比二维灰度图像和彩色图像更容易进行。基于分割方法的好处是,一旦目标被正确分割,点云分类即可以转换为较为简单的有遮挡或无遮挡的点云(位姿)识别。此时的分类,即点云识别可以使用Alignment的方法...

2017-07-04 01:46:34

阅读数:2432

评论数:0

三维重建10:点云配准和点云匹配

点云的匹配一般使用ICP方法( ICP:Iterative Closest Point迭代最近点),即两个点云纯粹通过刚体位姿变换即可大致重合。 若找稠密/稀疏点的匹配关系,ICP算法即简化成一个最小二乘问题,可以通过解方程的方法得到解析解,使用优化方式求解则可以得到全局最优解。...

2017-07-04 00:10:29

阅读数:3106

评论数:0

三维重建9:点云图像的滤波方法小结

PCL常规滤波手段均进行了很好的封装。对点云的滤波通过调用各个滤波器对象来完成。主要的滤波器有直通滤波器,体素格滤波器,统计滤波器,半径滤波器 等。不同特性的滤波器构成了较为完整的点云前处理族,并组合使用完成任务。实际上,滤波手段的选择和采集方式是密不可分的。

2017-07-03 23:21:22

阅读数:1945

评论数:0

三维重建8:点云图像的滤波方法

点云数据是三维空间的离散数据,不是类似于PLY格式的点线概念,因此可以使用所谓的“滤波方法”。点云数据若非看成深度map数据,则不再适用于使用二维图形的核卷积方法。此外,滤波方法与点云存储格式密切相关,点云存储格式一般为八叉树,而2.5D图像存储格式可以用深度Map形式,对应了不同的滤波方式。 ...

2017-07-03 00:01:05

阅读数:2728

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭