LightGBM: gradient boosting算法轻量级框架介绍

LightGBM是微软研发的快速、分布式、高性能的梯度提升框架,以其训练速度、内存效率和准确性受到机器学习领域的欢迎。支持回归、二分类、多分类和排名任务,适用于大规模数据处理。本文将介绍其安装、Python包使用、数据接口、参数设置以及预测操作。
摘要由CSDN通过智能技术生成

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)

LightGBM介绍

LightGBM(Light Gradient Boosting Machine), 是由微软“分布式机器学习工具”研发团队DMTK开发的一套基于决策树的快速、分布式、高性能的gradient boosting框架。2017年,这套框架首次在github上开源发布。它的分布式设计的优势在于:

  • 更快的训练速度与高效率;

  • 更低的内存使用量;

  • 更高的准确率;

  • 支持并行和GPU学习;

  • 处理超大规模数据的能力。

LightGBM发布以来,凭借这些优势迅速在机器学习领域流行,被广泛用于分类、回归、排秩等任务。

应用与测度

LightGBM支持以下的应用:

  • 回归,目标函数是L2损失

  • 二值分类,目标函数是logloss

  • 多值分类

  • cross-entropy, 目标函数是logloss

  • lambdarank

LightGBM安装

通常,LightGBM的安装可分为三种方式:命令行程序(CLI版本), Python包, R包. 这里,我们主要介绍Python

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值