机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)
LightGBM介绍
LightGBM(Light Gradient Boosting Machine), 是由微软“分布式机器学习工具”研发团队DMTK开发的一套基于决策树的快速、分布式、高性能的gradient boosting
框架。2017年,这套框架首次在github上开源发布。它的分布式设计的优势在于:
-
更快的训练速度与高效率;
-
更低的内存使用量;
-
更高的准确率;
-
支持并行和GPU学习;
-
处理超大规模数据的能力。
LightGBM发布以来,凭借这些优势迅速在机器学习领域流行,被广泛用于分类、回归、排秩等任务。
应用与测度
LightGBM支持以下的应用:
-
回归,目标函数是
L2
损失 -
二值分类,目标函数是
logloss
-
多值分类
-
cross-entropy, 目标函数是
logloss
-
lambdarank
LightGBM安装
通常,LightGBM的安装可分为三种方式:命令行程序(CLI版本), Python包, R包. 这里,我们主要介绍Python