芬兰阿尔托大学计算机系人工智能实验室程路课题组博士研究生职位
1 课题组介绍
单位:芬兰阿尔托大学计算机系 (https://www.aalto.fi/en/department-of-computer-science) 。
阿尔托大学(Aalto University)位于芬兰首都赫尔辛基,是一所古老而创新力强的北欧著名高等学府。其历史可追溯到1849年建立的赫尔辛基理工大学,后由赫尔辛基理工大学和赫尔辛基艺术设计大学以及赫尔辛基经济学院三所在各自领域著名的大学于2010年合并建成。芬兰全国半数以上的工程师出自该校该校,专注于工程技术、艺术与设计、经济学领域,为北欧五校联盟成员之一,是享有盛誉的多学科综合性大学。阿尔托大学校名是为表彰和纪念在科技、经济及艺术领域作出重大贡献的芬兰籍世界著名建筑大师阿尔瓦·阿尔托。现任校长为世界杰出计算机与人工智能领域专家Ilkka Niemelä教授。
阿尔托大学计算机系在拥有芬兰最全的研究领域,覆盖软硬件各个领域,排名欧洲前十。在人工智能领域有很深造诣,领域内著名算法self-organizing map (SOM)、Independent component analysis (ICA) 都由系里Teuvo Kohonen和 Erkki Oja开发出来。
导师: Lu Cheng (https://scholar.google.fi/citations?user=Zy14QK0AAAAJ&hl=en) and Aki Vehtari (https://users.aalto.fi/~ave/)。程路博士目前职位为Academy Research Fellow,在人工智能实验室内担任独立PI,隶属于Aki Vehtari教授实验室 (https://research.cs.aalto.fi/pml/)。
程路谷歌学术:https://scholar.google.fi/citations?user=Zy14QK0AAAAJ&hl=en
Aki Vehtari主页:https://users.aalto.fi/~ave/
研究成果: 程路博士以共同一作或通讯身份在高影响因子杂志如Nat. Comm.、MBE、NAR、Cell Host & Microbes上发表文章5篇,自2016年起共有1662次引用,H-index为14,i10-index为17。Aki Vehatari 教授是贝叶斯统计及高斯过程领域内专家,自2016年起引用率为24366,H-index为41,i10-index为94,是著名统计学教材Bayesian Data Analysis的作者。
研究方向:课题组隶属于人工智能实验室,致力于对各类生物问题进行统计建模,尤其是跟二三代测序相关的问题。课题组目前与中国、美国、英国、德国、芬兰等多个课题组有关于肺癌、糖尿病、肠道菌群进化等方向的合作。该博士具体课题为对单细胞多模态,单细胞选择性剪切,大规模多重序列比对以及大规模聚类的机器学习方法开发,根据具体申请人学术背景适当调整。
2 职位介绍
博士研究生,要求有硕士学位或近期毕业
时间:2022年1月1日开始,可延后
工资: 2300-3000 欧/月
也欢迎有意申请CSC奖学金的同学发邮件联系, 可以补贴部分工资.
3 招聘要求
对生物研究有热情,能够自主学习新知识,愿意在科研上投入大量时间
统计、计算机、生物信息相关的硕士学位(博士职位开始之前)
最好有过贝叶斯统计、高斯过程、深度学习方面经验
精通一门编程语言,能熟练使用Python和R
良好的英语阅读和写作能力
4 应聘材料
请将以下材料发送邮件至 lu.cheng.ac@gmail.com
邮件标题格式:[PhD 2022] 本人姓名
个人简历
两到三位推荐人联系信息
本科和研究生时期的成绩单
学位证书
一般收到申请材料2个星期内会给回复
5 截止日期
2022年1月31日
猜你喜欢
10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature Cell专刊 肠道指挥大脑
文献阅读 热心肠 SemanticScholar Geenmedical
16S功能预测 PICRUSt FAPROTAX Bugbase Tax4Fun
生物科普: 肠道细菌 人体上的生命 生命大跃进 细胞暗战 人体奥秘
写在后面
为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外5000+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。PI请明示身份,另有海内外微生物相关PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。
学习16S扩增子、宏基因组科研思路和分析实战,关注“宏基因组”
点击阅读原文,跳转最新文章目录阅读