Nature Microbiology:MicrobioRaman微生物拉曼光谱数据库

转载自: 微生物生态 iMcro

250219653810941864a6daa8e7f5914b.png

Lee, K.S., Landry, Z., Athar, A. et al. MicrobioRaman: an open-access web repository for microbiological Raman spectroscopy data. Nat Microbiol 9, 1152–1156 (2024). https://doi.org/10.1038/s41564-024-01656-3

MicrobioRaman”(https://www.ebi.ac.uk/biostudies/MicrobioRaman/studies)

在此,我们介绍了一个基于网络的开放访问微生物拉曼光谱数据存储库的建立。这个名为“MicrobioRaman”的数据集是受到如GenBank和UniProt等研究数据库的巨大成功和实用性的启发而建立的。这个集中存储库位于BioStudies数据库内,该数据库由公共机构——欧洲生物信息学研究所维护,它降低了数据丢失或最终被遗弃的风险,为分析提供了长期共同的参考,并在可访问性和透明度方面优于商业数据分析工具。我们认为,MicrobioRaman将通过作为微生物拉曼数据的开放访问存储库以及制定一系列报告标准,为这个不断发展的领域奠定基础。

拉曼光谱是一种基于非弹性散射的振动光谱技术,能通过分析散射光波长的变化来非破坏性地研究复杂样本的化学性质。在微生物学中,拉曼光谱可识别如碳水化合物、蛋白质等大分子的存在,并揭示其在微生物样本中的分子组成。结合稳定同位素探测、荧光原位杂交等技术,拉曼光谱有助于研究细胞的身份和表型,解决微生物学中的关键问题,如微生物多样性及其功能角色。该技术因其样品大小和条件的灵活性以及测量活微生物的能力,适用于从大型生物到微小病毒的不同样本,具有探测外星生命信号的潜力。

尽管拉曼光谱在微生物学领域具有潜力,但因为缺乏数据报告标准和用于存储微生物拉曼数据的通用数据库,微生物系统的分析方法和数据报告方式却以杂乱无章的方式发展,这阻碍了该领域的进步。因为适当的解释取决于生物背景、实验条件和数据处理,微生物的拉曼数据相对复杂。

微生物拉曼光谱分析复杂,涉及多种重叠峰值代表不同大分子的化学键。这些峰值解释依赖于生物背景,如1,570 cm−1处的峰在不同条件下有不同意义。SIP或FISH技术会影响拉曼峰位置或整体光谱形状,增加数据解读难度。微生物样本中分子浓度低、细胞小,且受采样和分析环境影响,进一步复杂化分析过程。

32aebed874d9ed5b64cd5eef8eb9cfeb.png

图1:拉曼技术及其在微生物学中的应用概述。

544b5ce5fc28e5867df20f4cd280166e.png

对于大数据集的定量和定性分析,拉曼数据通常使用计算算法进行处理。由于解释经常依赖于峰肩的存在或峰位置在几个波数级别上的微小变化(如同位素标记),任何计算处理都可能影响微生物拉曼数据的解释。

微生物拉曼数据虽重要但缺乏统一的开放存储库,阻碍了在微生物学中的广泛应用。当前,数据分散难访问,缺乏明确的报告标准。尽管有商业数据库,但它们不特定于微生物拉曼数据。因此,为微生物拉曼数据定制的数据库将极大促进数据共享和重用。

MicrobioRaman平台现已向当前和未来的拉曼用户开放——涵盖从常规拉曼光谱到其高级变体系统的数据,包括但不限于共振拉曼光谱、受激拉曼光谱(SRS)、相干反斯托克斯拉曼光谱(CARS)、表面增强拉曼光谱(SERS)、尖端增强拉曼光谱(TERS)、超拉曼光谱(HRS)、空间偏移拉曼光谱(SORS)、偏振拉曼光谱和时间门控拉曼光谱。在帮助页面(https://www.ebi.ac.uk/biostudies/submissions/help)上提供了逐步的、食谱式的新数据集提交指南。

MicrobioRaman旨在提供一个从基础和应用微生物学研究中获取的拉曼数据的综合存储库。该平台由本通讯的作者们共同开发,建立了一套数据报告标准,以确保不同用户之间的拉曼测量具有可重复性。

数据报告的标准包含五个部分(表1):(1)关于提交数据的作者和项目的一般信息;(2)生物背景,包括一般信息和特定的样本细节;(3)实验条件,包括用于拉曼测量的设备设置;(4)数据处理,特别关注光谱的处理和将数据集分类为子组;(5)仪器元数据,如尖峰滤波器类型、探测器规格、显微镜物镜或聚焦透镜的详细信息、共焦性和光谱细分。此外,该平台还允许数据提交者为新提交的数据指定一个公共发布日期,例如,以确保遵守出版禁令。

76f8789183aebc55339e1b7e020ef6d5.png

MicrobioRaman将成为微生物学领域的重要资源,提供化合物分布数据和标准化实验设计,激发新方法。随着机器学习在微生物拉曼光谱中的应用,MicrobioRaman的数据收集与共享变得尤为关键,因为机器学习的有效性依赖于集体智慧。通过建立报告标准和促进数据共享,MicrobioRaman将推动拉曼光谱在微生物学中的应用,并作为可重复测量的基石促进领域发展。我们期待通过社区参与和新型数据积累,MicrobioRaman能开发更多功能,如生物分子开放访问库,并鼓励更多拉曼用户贡献数据,加强微生物学中可重复拉曼测量的潜力。

宏基因组推荐

本公众号现全面开放投稿,希望文章作者讲出自己的科研故事,分享论文的精华与亮点。投稿请联系小编(微信号:yongxinliu 或 meta-genomics)

猜你喜欢

iMeta高引文章 fastp 复杂热图 ggtree 绘图imageGP 网络iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值