利用Gephi软件绘制网络图


作者:中国科学院天津工业生物技术研究所 王敬敬 博士

利用Gephi软件绘制网络图

1. 生成物种相关性矩阵

此步骤需要在R语言环境下运行,依赖psych包,输入文件为典型的OTU表或属水平丰度矩阵,示例如下。

image

输入文件FH_CK.txt文件格式, CK为空白对照的5个重复;FH为处理组的5个重复;G1-G148为丰度大于0.2%的属。

# 安装需要的包
install.packages("psych")

# 加载包
library(psych)

# 读取otu-sample矩阵,行为sample,列为otu
otu=read.table("FH_CK.txt", head=T, row.names=1)

# 计算OTU间两两相关系数矩阵
# 数据量小时可以用psych包corr.test求相关性矩阵,数据量大时,可应用WGCNA中corAndPvalue, 但p值需要借助其他函数矫正
occor = corr.test(otu,use="pairwise",method="spearman",adjust="fdr",alpha=0.05)
occor.r = occor$r # 取相关性矩阵R值
occor.p = occor$p # 取相关性矩阵p值

# 确定物种间存在相互作用关系的阈值,将相关性R矩阵内不符合的数据转换为0
occor.r[occor.p>0.05|abs(occor.r)<0.6] = 0

# 将occor.r保存为csv文件
write.csv(occor.r,file="FH_CK_0.05_occor.csv")

2. Gephi生成点、边文件

从官网https://gephi.org/下载安装Gephi 0.9.2

打开Gephi 0.9.2,点击“文件-打开”,选择“FH_CK_0.05_occor.csv”文件打开。

image

点击“下一步”

image

图的类型,选择“无向的”

image

点击确定后,出现以下页面:

image

点击“数据资料”,出现节点和边的信息,点击数据表格左上角“节点”,然后点击“输出表格”,输出点文件。点击“边”,然后点击“输出表格”,输出边文件。

image

3. 点、边文件注释

打开点文件,可添加物种分类信息等

image

打开边文件,可添加正负属性等:

image

4. 网络点、边美化

打开Gephi文件,点击“文件–导入电子表格”,导入结点文件

image

图的类型,选择“无向的”

image

打开Gephi文件,点击“文件–导入电子表格”,导入边文件

image

选择“Append to existing workspace”

image

在“概览”界面的“布局”中,选择“Fruchterman Reingold”,点击“运行”,待图形稳定后,点击“停止”

image

在“外观”中,点击“节点”,“颜色”,“Partition”,选择"Phylum",点击应用。即以颜色区别不同节点的门分类

image

在“外观”中,点击“节点”,“大小”,“Ranking”,选择"度",点击应用。即以不同度区别不同节点的大小。如果看不到大小变化,调整最大尺寸,如4变为30

image

在“外观”中,点击“边”,“颜色”,“Partition”,,选择"pn",点击应用。即以颜色区分边的正负。

image

5. 网络属性、预览和标签

在网络图右侧,统计选项卡中,点击“运行”,可计算网络和节点的参数:

image

在“预览”界面,点击“刷新”,可显示最终的图形

image

可在“预览设置”中选择“显示标签”,如下图所示

image

参考文献

  1. Gephi快速入门指南 https://wenku.baidu.com/view/29328a9f19e8b8f67d1cb92d.html
  2. Gephi 入门使用 https://blog.csdn.net/qq_35318838/article/details/79820923
  3. Gephi官方帮助 https://gephi.org/users/
  4. 一文学会网络分析——Co-occurrence网络图在R中的实现 https://mp.weixin.qq.com/s/s-Si_s5pk7EF5gueqruBRQ

猜你喜欢

写在后面

为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外2300+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍末解决群内讨论,问题不私聊,帮助同行。
image

学习扩增子、宏基因组科研思路和分析实战,关注“宏基因组”
image

点击阅读原文,跳转最新文章目录阅读
https://mp.weixin.qq.com/s/5jQspEvH5_4Xmart22gjMA

Gephi是一个开源的网络分析和可视化软件,可以用来研究和展示各种类型的网络数据。在Gephi中,关键词共现矩阵是一种用于分析关键词之间共同出现的模式和关系的方法。 关键词共现矩阵是一个由行和列组成的矩阵,其中每个行和列代表一个关键词。矩阵中的每个单元格包含了两个关键词之间的共现次数或者共现频率。通过分析这个矩阵,我们可以了解到哪些关键词经常一起出现,以及它们之间的关系密切程度。 使用Gephi进行关键词共现矩阵分析的步骤大致如下: 首先,我们需要准备一个数据集。数据集可以是一份文本文件,其中包含一系列的文档或文章。在每篇文章中,我们可以提取出关键词或者短语来作为分析的对象。 接下来,我们需要使用一个自然语言处理(NLP)工具来对文本进行处理,去除一些无用的单词,例如停用词、标点符号等。然后,我们可以使用合适的算法,如TF-IDF(词频-逆文档频率)算法来计算每个关键词的重要性。 然后,我们将建立一个关键词共现矩阵。在矩阵中,每个行和列代表一个关键词,而矩阵中的每个单元格则表示两个关键词之间的共现次数或者共现频率。 最后,我们可以使用Gephi软件进行可视化和分析。通过将关键词共现矩阵加载到Gephi中,我们可以使用各种布局算法和图形显示方式来展示关键词之间的关系。我们可以根据共现次数或者共现频率来调整节点和边的大小和颜色,以显示出关键词之间的不同关系。 总而言之,Gephi关键词共现矩阵分析是一种通过网络分析和可视化软件来研究和展示关键词之间共同出现模式和关系的方法。通过分析关键词之间的共现矩阵,我们可以更深入地了解关键词之间的关系,从而帮助我们进行更准确的文本分析和信息提取。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值