[CVPR2019](D3DFR)Accurate 3D Face Reconstruction with Weakly-Supervised Learning From Single Image

标题:Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set
链接:https://arxiv.org/pdf/1903.08527

亮点:主要是提出了通过同一人多张图来生成更精细的人脸3D模型的方案,主要框架是基于3DMM的。

Lambertian surface-朗伯面:即入射光会向所有方向均匀反射,也即漫反射的期望状态
spherical harmonic lighting-球谐光照:就是用来模拟光照的一个方案。类似于傅里叶变换,将一个复杂的函数分解为多个正交的基底函数,通过计算他们的系数来获得最终的结果。主要目的是为了快速模拟复杂的实时光照。
monochromatic lights-单色光:即单一频率的光,无法发生色散。对应的是复色光,如太阳光。
模型框架:使用R-NET从图片中提取人脸的参数(身份,表情,纹理,姿态,光照),然后使用可微分的渲染重构回2D模型,最后直接计算像素损失。


Robust Photometric Loss:计算生成图片和原始图片下的像素损失。计算像素损失时使用了一个基于皮肤的mask,这个mask是使用专门训练的皮肤检测器来提取的,用于保证loss只计算有皮肤的部分。
Landmark Loss:计算深沉图片和原始图片之间landmark之间的损失,这里是用了别人提供的landmark检测模型。
Perception Level Loss:发现只使用以上两个基于图片的loss会导致3D形状偏差较大的问题。所以作者又专门训练了一个FaceNet,用来提取图片的语义信息,然后再在两个图像上算损失。
Regularization:约束了一下texture的variance
Weakly-supervised Neural Aggregation for Multi-Image Reconstruction:作者认为同一个人的多个照片应该拥有类似的3D形状,因此他设计了一个方式来用多张2D图片来约束同一个3D模型。 

首先,模型中有一个R-Net负责预测所有具体的参数(身份,表情,纹理,姿势,光照),而其中最能体现多图一致性的参数就是身份参数,也即形状参数。之所以没考虑纹理是因为在野外数据集上同一个人的纹理差别很大。

因此,想要计算当前图片与3D模型之间的置信度的话就需要从身份参数上入手,作者的方式就是设计一个C-Net,输入R-Net的中间层输出,但只给出一个置信度,这个置信度会作为权重乘以R-Net预测出的身份参数,进而进行后续的渲染。这样做的好处是,借助梯度的反向传播,模型会自动优化这个置信度,最终成为可以客观反映身份参数在构建模型时的贡献度,也即我们所期望的置信度。

Accurate 3D Face Reconstruction from a Single Image: A Holistic Approach》这篇论文的主要内容是介绍了一种基于单个图像的准确三维人脸重建方法,其采用了一种全面的方法来捕捉人脸的几何形状和纹理信息。 论文的作者 Aaron S. Jackson, Adrian Bulat, Vasileios Argyriou, Georgios Tzimiropoulos 提出了一个由两个主要组件组成的框架:3DMM(3D Morphable Model)回归器和姿态估计器。 首先,他们使用3DMM回归器来估计人脸的形状参数和纹理参数。这个回归器通过将人脸图像映射到3DMM参数空间,利用深度卷积神经网络(CNN)来预测人脸的三维形状和纹理参数。 然后,他们提出了一种姿态估计器来估计人脸的姿态参数。这个姿态估计器使用CNN来预测人脸的旋转和平移参数,以校正人脸的姿态。 最后,通过将形状参数、纹理参数和姿态参数结合起来,他们可以生成准确的三维人脸重建结果。 该方法在多个数据集上进行了实验评估,结果表明,与其他基准方法相比,该方法能够产生更准确和逼真的三维人脸重建结果。此外,该方法还具有一定的鲁棒性,对于具有不同姿态和光照条件的人脸图像也能取得良好的效果。 总的来说,《Accurate 3D Face Reconstruction from a Single Image: A Holistic Approach》这篇论文提出了一种综合性的方法,通过结合形状参数、纹理参数和姿态参数,实现了准确的三维人脸重建。这个方法在单个图像上能够生成高质量的三维人脸模型,对于人脸分析、虚拟现实等应用具有重要意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值